\qquad
Note: This mission must be turned in on this sheet to receive credit.

S-BOX for S-AES

Input	Output	Input	Output
0000	1001	1000	0110
0001	0100	1001	0010
0010	1010	1010	0000
0011	1011	1011	0011
0100	1101	1100	1100
0101	0001	1101	1110
0110	1000	1110	1111
0111	0101	1111	0111

Use S-AES to encrypt the plaintext $P_{1}=1110110011110101$ using the key $K=0010111011110000$.

Determine the RoundKeys:

$K_{0}=0010111011110000$
Break into two pieces: $W_{0}=$ \qquad $W_{1}=$ \qquad
Compute $g\left(W_{1}\right):($ Remember, $i=1$ in this step.)

Show your work here:

2

$$
\begin{array}{rr}
g\left(W_{1}\right): & W_{1}: \\
\oplus W_{0}: \\
=W_{2}: \\
K_{1}=W_{2} W_{3}: & \oplus W_{2}: \\
\hline
\end{array}
$$

Compute $g\left(W_{3}\right)$: (Remember, $i=2$ in this step.)

$$
g\left(W_{3}\right):
$$

Show your work here:
$\oplus W_{2}$: \qquad
$=W_{4}$: \qquad
W_{3} : \qquad
$\oplus W_{4}$: \qquad
$K_{2}=W_{4} W_{5}$: \qquad .
Round 0: Add Round Key:

$$
\begin{aligned}
& P_{1}: \\
& \oplus K_{0}: \\
&= \\
&
\end{aligned}
$$

Round 1: Substitution: \qquad .
Round 1: Shift Rows: First, write as a matrix filling entries in down columns. Then shift the entries in the bottom row.

Resulting Matrix: $[\square \square]$

Round 1: Mix Columns:

Convert elements to \mathbb{F}_{16}, and then perform the matrix multiplication:

$$
\begin{aligned}
E M= & {\left[\begin{array}{cc}
1 & x^{2} \\
x^{2} & 1
\end{array}\right][\square] } \\
& \equiv[\square]=[\square] \\
\square & \square \\
\square & \square
\end{aligned}
$$

Round 1: Add Round Key:
Rewrite as string

$$
\begin{aligned}
& C_{1}: \\
& \oplus K_{1}: \\
&= \\
&
\end{aligned}
$$

Round 2: Substitution: \qquad .
Round 2: Shift Rows: First, write as a matrix filling entries in down columns,

Then shift the entries in the bottom row.

Round 2: Add Round Key:
Rewrite as string

$$
\begin{aligned}
& C_{2}: \\
& \oplus K_{2}: \\
&= \\
&
\end{aligned}
$$

Final Cipher Text: $C=$ \qquad

Part 2: Modes of Operation

Check your work with Sage! Correct the above as necessary.
Now, suppose that in addition to the plaintext from part $1, P_{1}=1110110011110101$ you also want to send a second message, $P_{2}=1111011101111011$, using the same key. Using Sage (no need to do this by hand) determine the corresponding ciphertexts to be sent if you are using:
Electronic Codebook (ECB):

$$
\begin{aligned}
& C_{1}=E_{K}\left(P_{1}\right) \\
& C_{2}=E_{K}\left(P_{2}\right)
\end{aligned}
$$

\qquad
\qquad
Cipher Block Chaining (CBC): (Use $C_{0}=0000000000000000$.)

$$
\begin{aligned}
& C_{1}=E_{K}\left(P_{1} \oplus C_{0}\right): \\
& C_{2}=E_{K}\left(P_{2} \oplus C_{1}\right):
\end{aligned}
$$

\qquad

Cipher Feedback (CFB): (Use $C_{0}=0000000000000000$.)

$$
C_{1}=E_{K}\left(C_{0}\right) \oplus P_{1}:
$$

\qquad

$$
C_{2}=E_{K}\left(C_{1}\right) \oplus P_{2}:
$$

\qquad
Output Feedback (OFB): (Use $O_{0}=0000000000000000$.)

$$
\begin{aligned}
& O_{1}=E_{K}\left(O_{0}\right): \\
& C_{1}=O_{1} \oplus P_{1}: \\
& O_{2}=E_{K}\left(O_{1}\right): \\
& C_{2}=O_{2} \oplus P_{2}:
\end{aligned}
$$

Counter (CTR): (Use $X_{0}=0000000000000000$.)
X_{1} : \qquad
$C_{1}=E_{K}\left(X_{1}\right) \oplus P_{1}:$ \qquad
X_{2} : \qquad
$C_{2}=E_{K}\left(X_{2}\right) \oplus P_{2}:$ \qquad

