MATH 314 Spring 2018 - Class Notes

5/7/2019
Scribe: Alex Buttrum
Summary: Learned about the Birthday attack and setup for Digital Structure Algorithm (DSA)

Notes:

Probability:

- If we have K people what is the probability that at least two share a birthday?
- Compute probability that none share a birthday?
- $K=2\left(\frac{365}{366}\right)-i$ Probability that 2 people do not share birthday.
- $K=3 \quad\left(\frac{365}{366}\right) \times\left(\frac{364}{366}\right)$ - Probability that 3 people do not share birthday.
- For general K: $\frac{366-K+1}{366}=e^{\frac{-K^{2}}{2 \times 366}}$
- If K things are chosen from N things (with replacement) the probability that no object is drawn is about $e^{\frac{-K^{2}}{2^{N}}}$
- Birthday paradox allows us to see probability of collision.

Birthday Attack

- Mallory wants to maliciously make Alice sign a bad contract.
- She going to draft a good contract that Alice would be willing to sign
- She finds 30 places in this contract where she can make small changes (2 possibilities)
- 2^{30} good contracts.
- She also drafts a bad contract with 30 possible changes. So she gets 2^{30} bad contracts.
- Alice uses a weakly collision resistant hash function that produces 50 bit digests.
- Mallory has 2^{31} contracts total, she computes the has of every one of those contracts.
- $N=2^{50} \quad K=2^{31}$
- What is the probability of finding a collision? (2 different contracts with the same hash)
- Plug these into $e^{\frac{-K^{2}}{2^{N}}}=e^{\frac{-2^{62}}{2^{51}}}=e^{\frac{-2}{11}}$
- - e^{-2048} essentially 0 , lots of collisions.
- So there is almost certainty a collision between a good contract and a bad contract.
- So Mallory gives Alice this contract to sign. Good contract $=\mathrm{m} 1$, Bad contract $=\mathrm{m} 2$. $h(m 1)=h(m 2)$
- Alice looks over the good contract and signs it $S A(m)=S(h(m 1))=S(h(m 2))$ She sends (m1,s)
- Mallory claims Alice signed $m 2$ since $h(m 2)=h(m 1)$. S is also a valid signature for $m 2$.
- Never sign a message that someone else produced.
- Use digests with more than $\mathrm{e}+256$ bits.
- Another way to sign messages uses El gamal. (Check book for that)

Digital Structure Algorithm (DSA)

- Uses the same ideas but faster and more secure
- Relies on discrete log problem to be secure.

DSA setup

- Large prime number p (200 digits)
- $p-1$ has a large factor p
- $q(p-1)=>(p-1) \equiv K q$ Where K is small
- Pick a primitive root $g(\bmod p)$
- Compute $\alpha \equiv g^{\frac{p-1}{q}} \equiv g^{K}(\bmod p)$
- Note α is not a primitive root $\alpha^{q} \equiv\left(g^{\frac{p-1}{q}}\right)^{q} \equiv 1(\bmod p)$
- What matters in the exponent of α is $(\bmod q)$
- Alice picks a secret number with $1<a<q$, then computes $\beta \equiv \alpha^{a}(\bmod p)$
- Her public key is (p, q, α, β)
- That's where the lesson ended

