MATH 314 Lecture Notes

4/4/2019
Scribe: Caroline Eilman
Summary: This class AES (Advanced Encryption System) was discussed, and the mechanics of SAES (Simplified AES) were outlined and practiced.

Notes:

Advanced Encryption Standard (AES)

- Submitted in late 90s and adapted into AES
- Not a Feistel Cipher
- One S-box which was openly explained algebraically upon its release
- Faster, more random, more secure than DES
- In SAES, uses F_{16} field mod the irreducable polynomial $x^{4}+x+1$

Calculating Round Keys in SAES:
The master key is 16 bits.
Keys, in a sense, are made of two "words" in SAES or 8 bit chunks.
W_{0} and W_{1} are each made of half the master key, 0 the left and 1 the right. After that:

- Even $W_{2 i}=g\left(W_{2 i-1}\right) X O R W_{0}$
- Odd $W_{2 i+1}=W_{2 i} X O R W_{0}$
$\mathrm{G}($ word $)=$

1. $W_{2 i-1}$ split into two 4 bit halves.
2. Take both halves and find their new s-box values.
3. Use the new first half as the second half of the final round key.
4. Use the new second half and XOR it with $x^{i+2} \bmod \left(x^{4}+x+1\right)$
5. Use that new value as the first half of the final round key.
6. Repeat these steps until you have the fifth "word".

Each round key is made up of two words. Simply add the second word to the end of the first.
$\mathrm{Rk} 0=\mathrm{w} 0+\mathrm{w} 1$
$\mathrm{Rk} 1=\mathrm{w} 2+\mathrm{w} 3$
Rk2 $=\mathrm{w} 4+\mathrm{w} 5$

SAES Steps (same as AES, just simpler, and only 2 rounds)

1. XOR round key with text
2. Shift Rows
3. Mix Columns
4. Substitute (break into 4 bit 'nibbles' run through s-box)
*For Round 0, only perform step 4.
*For last round, skip step 3.

Bit Representation of \mathbf{F}_{16} field

Represent each individual "number" as a four bit binary number.
The first bit is whether x^{3} exists.
The second bit is whether x^{2} exists.
The third bit is whether x exists.
The fourth bit is whether 1 exists.
(If it 'exists', use a 1 , if not, then 0 .)

S-box

To use, take a 4 bit chunk. First two numbers are the row and the second two determine the column.
The new 4 bit chunk is the transformed 4 bit chunk.

	00	01	10	11
00	1001	0100	1010	1011
01	1101	0001	1000	0101
10	0110	0010	0000	0011
11	1100	1110	1111	0111

Example:

Master key: 0100101011110101
$\mathrm{W} 0=01001010$
$\mathrm{W} 1=11110101$
$\mathrm{W} 2=g\left(W_{1}\right) \mathrm{XOR} W_{0}$
11110101 > 01011111

S box
00010111
XOR 0001 with $x^{i+2}=x^{1+2}=x^{3}$
0001
$+1000=$
1001
$G\left(W_{1}\right)=10010111$
XORed with W_{0}
$W_{2}=11011101$
$W_{3}=W_{2} X O R W_{1}=11011101 X O R 11110101=00101000$
so on until have all 5 words.
$W_{4}=10000111$
$W_{5}=10101111$

$$
\begin{aligned}
& \quad R_{k 0}=W_{0}+W_{1}=0100101011110101 \\
& R_{k 1}=W_{2}+W_{3}=1101110100101000 \\
& R_{k 2}=W_{4}+W_{5}=1000011110101111
\end{aligned}
$$

Now to take these round keys and use them:
Plaintext: 1000011100111011
Round 0 :
Only do step 4 , xor with round key.
$R_{k 0}$ XOR plaintext=1100 110111001110
Round 1:
Do all steps.
This is about where the class stopped due to time constraints.

