MATH 314 Spring 2019 - Class Notes

04/25/2019
Scribe: Sura Shiferaw

Summary: Todays topic covered are Meet-in-the-Middle attack on DES, 2DES and how a brute force attack would work and ADES introduction

El-Gamal Cryptosystem

- Alice wants to create a public key
- find a large prime p (100ish digit)
- find a primitive root $(\bmod p)$
- she picks a seacret exponent a

$$
2<a<p-1
$$

- she compute

$$
\beta=\alpha^{a}(\bmod p)
$$

- Her public key is (p, α, β)
- Bob want to send Alice the message $m<p$
- Bob needs to pick a secret exponent b (called the eplomoral key)
- He compute $r=\alpha^{b}(\bmod p) t=m \beta^{b}(\bmod p)$
- He sends the pair (r,t) to Alice
- r is masking his secret exponent
- t is masking the actual message m
- to decrypt Alice compute

$$
m=t * r^{-a}(\bmod p)
$$

Why Does $t * r^{-a}$ giveAliceM?

- we know

$$
\begin{gathered}
t=m \beta^{b}(\bmod p) \\
r=\alpha^{b}(\bmod p) \\
t(r)^{-a}=\left(m \beta^{b}\right) *\left(\left(\alpha^{-b a}\right)\right. \\
=m\left(\alpha^{a b}\right) *\left(\alpha^{-b a}\right)(\bmod p) \\
=m \alpha^{a b-a b}=m(\bmod p)
\end{gathered}
$$

- If Eve wants to attack this she wants to find m
- She has to use t to get it

$$
\begin{gathered}
t=m \beta^{b}(\bmod p) \\
m=t \beta\left({ }^{b}\right)^{(-1)}(\bmod p)
\end{gathered}
$$

- She would need to know what to divide by to get m from t.
- This is B^{b} to find this she needs to know b
- To find b Eve would need to solve $r=B^{b}(\bmod p)$ for p
- That's the discrete log problem
- Eve could decrypt the same way Alice does if she knew
- To find a Eve would need to solve $\beta=\alpha^{a}(\bmod p)$ also the discrete log problem.

Notes:Bob has to pick a different value of b each time he send a message

- If Bob uses the same b multiple times to

$$
\begin{gathered}
m_{1} a n d m_{2} \\
r_{1}=\alpha^{b}(\bmod p) \\
r_{2}=\alpha^{b}(\bmod p)
\end{gathered}
$$

- Eve can immediately see that Bob used the same b because $r_{1}=r_{2}$
- If Eve manages to figure out one message m_{1} then she can compute

$$
\beta^{b}=t_{1} * m_{1}^{-1}(\bmod p)
$$

- so she can find m_{2}

$$
m_{2}=t_{2} * \beta^{b}\left(^{-1}\right)(\bmod p)
$$

- Alice public key is $(p, \alpha, \beta)=(13,2,8)$
- Bob wants to send a message m to Alice $\mathrm{m}=10$
- He picks a random $b=7$
- He compute $r=\alpha^{b}=2^{7}(\bmod 13)$

$$
2^{2}=4(\bmod 13)
$$

$$
2^{4}=16=3(\bmod 13)
$$

$$
2^{7}=2 * 2^{2} * 2^{4}
$$

$2 * 4 * 3=24(\bmod 13)=11(\bmod 13) \quad r=11$

- $t=m * \beta^{b}$

$$
\begin{gathered}
10 * 8^{7}(\bmod 13) \\
-8=5(\bmod 13) \\
t=11(\bmod 13)
\end{gathered}
$$

- Bob sends $(\mathrm{r}, \mathrm{t})=(11,11)$
- Alice wants to decrypt $(11,11)$
- she compute $\mathrm{t}^{*} \mathrm{r}(\bmod \mathrm{p})$
- recall the exponent on r matters $(\bmod p-1)$

$$
\begin{gathered}
-3(\bmod 12)=9(\bmod 12) \\
11 * 11^{9}(\bmod 13)=10^{10}(\bmod 13) \\
=36(\bmod 13) \\
10=m_{2}(\bmod 13)
\end{gathered}
$$

Extra Security with El-gamal over RSA

- Suppose Alice and Bob are using RSA (n,e)
- Eve sees the ciyphertext C sent from Bob to Alice
- Eve guess the real message is m
- She can check her guess by computing $m^{e}(\bmod n)$
- If she gets(she was right!)
- Now suppose they are using El-gamal, she see the ciyphertext (r,t) being sent.
- She think the message is m
- Even if she is right and tries to encrypt it she will get a different (r, t)unless she picks the same b.

Authentication

- In the physical world we can use signatures/stamp to verify our identity.
- In the digital world we need a way to tie a message to a signature.
- We want to use cryptography to do this.

RSA signature Algorithm

- Alice has an RSA public key (n,e).
- Alice want to send Bob m and prove it is her sending the message.
- She computes $S=m^{d}(\bmod n)$
- She sends Bob the pair (m,s).
- Bob want to verify the signature he computes $S^{e}(\operatorname{modn})$

$$
S^{e}=m^{e d}=m(\bmod n)
$$

- Bob accepts the signature if

$$
S^{e}=m(\bmod n)
$$

- Alice is the only one who could have produced such a signature

