MATH 314 Spring 2018 - Class Notes

4/23/2019

Scribe: Abel Tadesse

Summary: Continuation on Diffie Hellman from the last class.

<u>Notes</u>: In the previous lesson we covered the main strategies on how to implement the method and we will starts of from an example.

Diffie - Hellman example

 $p = 13, \alpha = 2$ Alice picks the secret key of a = 3. Bob picks the secret key of b = 8.

Bob computes $B = \alpha^b \equiv 2^8 \equiv 9 \pmod{13}$ and sends this to Alice.

ilu sellus tills to Allo

Alice computes $A = \alpha^a \equiv 2^3 \equiv 8 \pmod{13}$ and sends this to Bob. Now Alice computes $k = B^a \equiv 9^3 \equiv 9^2(9) \equiv 3(9) \equiv 1 \mod{13}$ And Bob computes $k = A^b = 8^8 \equiv 1 \pmod{13}$ They both share the key k = 1. Say eve wants to break Diffie Hellman \pmod{s} heidstosolve $A \equiv \alpha \pmod{s}$

She can try every possible value of a this requires o(p) time

Baby Step Giant Step

 $N = \lceil \sqrt{p} \rceil$ She creates two tables

Eve finds the secret exponential

How many steps we had to create tables in $NoN = o\sqrt{p}$ running time why is there exactly one $a < n-1 < n = \sqrt{n^2} < N^2$ write a/n base N as a = r + uN

a write <math>a/n base N as a = x + yNwe can find x and y $\alpha^a \equiv \alpha^{x+yN} \equiv \pmod{\alpha^l \equiv \alpha^{-yN}}$

Trap door function for RSA:

Integer factorization

if we want a new public key we need a new trapdoor function **Discrete Logarithm Problem**

 $\ln \alpha = \beta^x \bmod m$

If we know β , compute α quickly (mod exp. If we know $\alpha \beta$ want to find x-this turns out to be hard

Ex. Solve $6 \equiv 2^x \mod 13$ x = 5 works $2^5 = 32 \equiv 6 \mod 13$ We can find this by brute force attack try all values of x

If this was calculus, how would you solve $6 = 2^x \log_2 6 = \log_2 2^x \log_2 6 = \ln 6 / \ln 2 = x$

This problem is called the discrete log problem. Also like factoring we didn't know that there isn't a fast way to compute discrete logs but so far we haven't found Diffie Hellman key exchange can be used to send a message but allows Alice and Bob to agree on a shared private key that can be used for symmetric key cryptosystem

Steps of Diffie - Hellman

1.) Alice picks a large prime p

2.)She finds a primitive root $\alpha \pmod{}$ (mod) (recall α is a prime root (mod *i*) $f \alpha \pmod{}$ produces every residu 3.)Alice picks a random b with 2 < b < p - 1

4.) A and b are secret not to be shared with each other. Alice computes $A = \alpha^a \pmod{b}$ bob computes B

5.) Alice computer $k(B)^a \pmod{b}$ bob computes $A^b \pmod{b}$ why is $A^b \equiv B^a \pmod{2}$?

 $A^b \equiv \alpha^{ab} \equiv \alpha^{ab} \equiv \alpha^{ba} \equiv B \pmod{p}$

secret k which you can use for AES Suppose Eve is tying to break this Eve knows p and α and A, B her goal is to find k so she has to compute either B^2 or $A^b \pmod{1}$ to do this she needs to finds a or b. To find these she would have to solve $A = \alpha \pmod{1}$. for a or $B \equiv \alpha^b \pmod{1}$ for b.