MATH 314 Spring 2018 - Class Notes

4/23/2019
Scribe: Abel Tadesse
Summary: Continuation on Diffie Hellman from the last class.
Notes: In the previous lesson we covered the main strategies on how to implement the method and we will starts of from an example.

Diffie - Hellman example

$p=13, \alpha=2$
Alice picks the secret key of $a=3$.
Bob picks the secret key of $b=8$.
Bob computes $B=\alpha^{b} \equiv 2^{8} \equiv 9(\bmod 13)$
and sends this to Alice.
Alice computes
$A=\alpha^{a} \equiv 2^{3} \equiv 8(\bmod 13)$ and sends this to Bob.
Now Alice computes
$k=B^{a} \equiv 9^{3} \equiv 9^{2}(9) \equiv 3(9) \equiv 1 \bmod 13$
And Bob computes
$k=A^{b}=8^{8} \equiv 1(\bmod 13)$ They both share the key $k=1$.
Say eve wants to break Diffie Hellman $(\bmod s) h e i d s t o s o l v e A \equiv \alpha(\bmod)$
She can try every possible value of a this requires o(p) time

Baby Step Giant Step

$N=\lceil\sqrt{p}\rceil$
She creates two tables
Eve finds the secret exponential
How many steps we had to create tables in $N o N=o \sqrt{p}$ running time why is there exactly one $a<p-1<p=\sqrt{p}^{2}<N^{2}$ write a / n base N as $a=x+y N$
we can find x and $\mathrm{y} \alpha^{a} \equiv \alpha^{x+y N} \equiv(\bmod) \alpha^{l} \equiv \alpha^{-y N}$
Trap door function for RSA:

Integer factorization
if we want a new public key
we need a new trapdoor function

Discrete Logarithm Problem

$\ln \alpha=\beta^{x} \bmod m$
If we know β, compute α quickly $(\bmod \exp$. If we know $\alpha \beta$ want to find x -this turns out to be hard
Ex. Solve $6 \equiv 2^{x} \bmod 13$
$x=5$ works $2^{5}=32 \equiv 6 \bmod 13$ We can find this by brute force attack
try all values of x

If this was calculus, how would you solve $6=2^{x}$
$\log _{2} 6=\log _{2} 2^{x} \log _{2} 6=\ln 6 / \ln 2=x$
This problem is called the discrete log problem.
Also like factoring we didn't know that there isn't a fast way to compute
discrete logs but so far we haven't found Diffie Hellman key exchange can be used to send a message but allows Alice and Bob to agree on a shared private key that can be used for symmetric key cryptosystem

$\underline{\text { Steps of Diffie - Hellman }}$

1.) Alice picks a large prime p
2.) She finds a primitive root $\alpha(\bmod)($ recall α is a prime root $(\bmod i) f \alpha(\bmod)$ produces every resid
3.) Alice picks a random b with $2<b<p-1$
4.) A and b are secret not to be shared with each other. Alice computes $A=\alpha^{a}(\bmod)$ bob computes B
5.) Alice computer $k(B)^{a}(\bmod)$ bob computes $A^{b}(\bmod)$ why is $A^{b} \equiv B^{a}(\bmod)$?
$A^{b} \equiv \alpha^{a b} \equiv \alpha^{a b} \equiv \alpha^{b a} \equiv B(\bmod)$
secret k which you can use for AES Suppose Eve is tying to break this Eve knows p and α and A, B her goal is to find k so she has to compute either B^{2} or $A^{b}(\bmod)$ to do this she needs to finds a or b . To find these she would have to solve $A=\alpha(\bmod)$. for a or $B \equiv \alpha^{b}$ (mod) for b.

