Summary: Todays topic covered are Meet-in-the-Middle attack on DES, 2DES and how a brute force attack would work and ADES introduction

Known Plain Text Attack

- Eve Knows Plaintext(p) and Ciphertext(c)
- $C=E_{k 2}\left(E_{k 1}(p)\right) 2 \mathrm{DES}$
- Eve can Brute-Force $D E S\left(2^{56}\right.$ operation $)$
- but she cant do 2^{112} operations
- So she creates two tables one for Encryption and Decryption

Our Goal is to find entries that show up in both tables: $E_{k 1}(p), D_{k 2}(c)$

Encryption Table	Decryption Table
$E_{k 1}(p)$	$D_{k 2}(c)$
For all k_{1} and s	For all possible $k_{2}, \mathrm{~s}$

- How many pairs does Eve encrypt to find the keys ?
- Pretend each entry is a random string of bites(each string has 64 bits)
- Take a string from the encryption table and one from decryption table
- Find the probability they are equal
- Probability 2 bits are equal $=1 / 2^{64}$
- Total pair of entries $=2^{56} * 2^{56}=2^{112}$
- Expected outcome $2^{112} * 1 / 2^{64}=2^{48}$
- Eve does this again with new p_{2} and $c_{2}, c_{2}=E_{k 2}\left(E_{k 1},\left(p_{2}\right)\right)$
- What is the expected number of pairs of keys for the second round?
- Expected outcome $=2^{48} * 1 / 2^{64}=1 / 65536$
- We know there is at least one valid pair exists
- Almost always after 2 tries Eve obtains k1 and k2
- How many computation is this?
- We have 2^{56} computation for encryption and 2^{56}... decryption table
- 2DES has only 57 bits for security only 1 more then DES
- Double encryption is vulnerable to meet-in-the-middle-attack
- because $\mathrm{C}=\operatorname{Ek2[Ek1(P)]~and~} \mathrm{P}=\operatorname{Dk} 1[\operatorname{Dk2(C)}]$
- Braking it requires 2^{57} operations

1. 3DES: IF WE USE DES 3 TIMES

- k_{1}, k_{2}, k_{3}
- $c=E_{k 3}\left(E_{k 2},\left(E_{k 1}(p)\right)\right)$
- $D_{k 3}(c)=\left(E_{k 2},\left(E_{k 1}\right)(p)\right)$
- $D_{k 2}\left(D_{k 3}(c)\right)=\left(\left(E_{k 1}\right)(p)\right)$
- 3DES is not vulnerable to meet in the middle attack like 2DES
- we use $c=E_{k 1}\left(D_{k 2}\left(E_{k 1}\right)(p)\right)$ to encrypt
- we use $p=D_{k 1}\left(E_{k 2}\left(p_{k 1}\right)(c)\right)$ to decrypt
- 3DES is still used in practice especially in the financial industry

NIST decided in the 90 's it was time to replace DES put out a call for replacement The chosen design was an algorithm Rijndael "pronounced rain-dahl" became the official replacement of DES called "ADES"
Advanced Encryption Standard
Faster and more secure than DES as well as it dosent have a back door

