Cryptography, Nathan McNew Notes 04.16.2019

Benjamin Pecson

April 16, 2019

1 Miller-Robin Primality Test

Compositeness Test Test if n is prime

Write n-1 as $m2^k$, where m is odd. Choose a randomly in $2 \le a \le n-1$

Compute: $b_0 = a^m \pmod{n}$

if $b_0 = \pm 1$ Return probably prime

for i from 1 to k-1: $b_i \equiv b_i \pmod{n}$

if $b_i \equiv -1 \pmod{n}$ return probably prime

> if $b_i \equiv 1 \pmod{n}$ return composite

If during the for loop ± 1 is never produced return composite

Example, Given:

 $\begin{array}{c} b_k \equiv b_0^{2^k} \\ b_k \equiv a_0^{m \times 2^k} \\ b_k \equiv a^{n-1} (\text{mod n}) \\ \text{if } a^{n-1} \not\equiv 1 (\text{mod n}) \\ \text{then n is composite by the Fermat Test} \end{array}$

Another Example, Given:

a,b(mod n) where $a \not\equiv b \pmod{n}$ and $a \not\equiv -b(\mod n)$ but $a^2 \equiv b^2 \pmod{n}$ then n is composite and gcd(a-b,n) is a non-trivial factor of n

2 Proof of the Factory Trick

Suppose $a \not\equiv b \pmod{n}$ and $a \not\equiv -b \pmod{n}$ but $a^2 \equiv b^2 \pmod{n}$

Goal N has to be composite and a factor of n Then $a^2 - b^2 equiv \ 0 \pmod{n}$ $(a+b)(a-b) \equiv 0 \pmod{n}$ so, n divides (a+b)(a-b)

Proof by Contradiction: Suppose GCD is a non-trivial factor of n GCD(a-b,n)Then $gcd(a-b,n)\equiv 1$, or gcd(a-b,n)=nif $gcd(a-b,n)\equiv 1$ or gcd(a-b,n)=nif gcd(a-b,n)=nthen n divides a-b so, a-b $\equiv 0 \pmod{n}$ $a\equiv b \pmod{n} **$ Not allowed to the gcd(a-b,n)=1

n has to divide a+b, but if this is true $a+b \equiv 0 \pmod{n}$, so $a \equiv -b \pmod{n}$

How is this relevant to the Miller-Robin Test?

Suppose somewhere in the for loop the following: $b_i \equiv b_{i-1}^2 \pmod{n}$ which yields 1 Note: $b_{i-1} \not\equiv \pm 1 \pmod{n}$ Note: $1^2 \equiv 1 \pmod{n}$ The following is found: $(b_{i-1})^2 \equiv 1 \equiv 1^2 \pmod{n}$ Note: $(b_{i-1}) \not\equiv \pm 1 \pmod{n}$ So, n has to be composite.

If n is composite, then at least 3/4 of the choice for a can be proven composite

Example: Miller Robin Test n = 25Find m and km = n - 1 = 24 = $8*3 = 2^{3}*3$ m and k are 3 Pick a, a = 7, "Random" **For the purpose of demonstration $b_0 = a * m(modn) \equiv a^3(mod25)$ $\equiv 7^3 \pmod{25}$ $\equiv 7^{2*}7 \pmod{25}$ $\equiv (-1)^*7 \pmod{25}$ $b_0 = 18$ For i in 1 to 2Compute $b_i \equiv b_{i-1} \pmod{n}$ If $b_i \equiv 1 \pmod{n}$ return composite If $b_i \equiv -1 \pmod{n}$ return probably prime $b_i \equiv 18^2 \pmod{25}$ $\equiv -7^2 \pmod{25}$ $49 = -1 \pmod{25}$ $b_i \equiv -1 \pmod{25}$ $b_i \equiv -1$ return "probably prime" according to Miller-Robin Try a=4 $b_0 \equiv 4^3 \pmod{25}$ $\equiv 64 \pmod{25}$ $\equiv 14 \pmod{25}$

 $b_1 \equiv 14^2 \pmod{25} \equiv 196 \pmod{25} \equiv 21 \pmod{25}$ $b_2 \equiv 21^2 \pmod{25}$ $\equiv 16 \pmod{25}$ End of the loop

Composite confirmed by Miller Robinson Test

For i in 1 to 2 Compute $b_i \equiv b_{i-1} \pmod{n}$ Return Composite If $b_i \equiv -1 \mod n$ Return probably prime

If the for loop finishes then n is composite

3 RSA and Miller Robinson

RSA uses Miller Robinson Breaking RSA to find factors of n? What is the best way to factor n = pq? Idea: Trial division, divide n by numbers ; \sqrt{n} until a factor is found. How long will it take to check all the numbers of the square root of n? For a computer the size of a number of bits required to write it down: The size of n is $\lceil log_2 n \rceil$

Suppose, $\mathbf{x} = log_2\mathbf{n}$ $2^x = \mathbf{n}$

The run-time of Trial Division is $O(\sqrt{2^x})$ This is an example of exponential run-time. Goal: Find algorithm with Big O ; trial Division Can the factory trick make factoring faster?

> If $a \not\equiv b \pmod{n}$, with $a^2 \equiv b^2 \pmod{n}$

Idea 2: Pick a random a with a square root of $n \le a \le n-1$ Compute $A \equiv a^2 \pmod{n}$ If $A \equiv b^2 \pmod{n}$ for some b factor n

> Example: 91 Pick a = 10 Compute $a^2 \equiv 100 = 9 = 3^2$ Here, $10^2 \equiv 3^2 \pmod{91}$ but $10 \not\equiv 3, 10 \not\equiv -3 \pmod{91}$ So here, gcd(91, 10-3) = 7

 $\label{eq:alpha} \mbox{Since a is random} \\ A \equiv a^2 (\mbox{mod n}) \mbox{ is essentially a random number mod n}$

What is probability that $A \equiv \text{isomething}$; (mod n) How many squares are there less than n? The floor function of \sqrt{n} many squares Probability that we get a square is the $\sqrt{n}/n = 1/\sqrt{n}$ Probability of success is $1/\sqrt{n}$

This means the run-time ends up being $O(\sqrt{n})$ This run time is also exponential.

How can an exponential run-time for factoring be beat? Dixon's factorization algorithm has quadratic run-time, which is faster than exponential, but slower than polynomial run-time. Dixon's factorization algorithm has an approximate run time of $O(e^{\sqrt{x \ln x}})$