
Cryptography, Nathan McNew

Notes 04.16.2019

Benjamin Pecson

April 16, 2019

1 Miller-Robin Primality Test

Compositeness Test
Test if n is prime

Write n-1 as m2k, where m is odd. Choose a randomly in 2 ≤ a ≤ n-1

Compute: b0 = am (mod n)

if b0 = ± 1
Return probably prime

for i from 1 to k-1: bi ≡ bi (mod n)

if bi ≡ -1(mod n)
return probably prime

if bi ≡ 1 (mod n)
return composite

If during the for loop ± 1 is never produced
return composite

Example,Given:

bk≡b2
k

0

bk≡am×2
k

0

bk≡an−1(mod n)
if an−1 6≡ 1(mod n)

then n is composite by the Fermat Test

Another Example, Given:

1

a,b(mod n)
where a 6≡ b (mod n)
and a 6≡ -b(mod n)

but a2 ≡ b2 (mod n)
then n is composite and gcd(a-b,n) is a non-trivial factor of n

2 Proof of the Factory Trick

Suppose a 6≡ b (mod n)
and a 6≡ -b (mod n)
but a2 ≡ b2 (mod n)

Goal N has to be composite and a factor of n
Then a2 - b2 equiv 0 (mod n)

(a+b)(a-b)≡ 0 (mod n)
so, n divides (a+b)(a-b)

Proof by Contradiction:
Suppose GCD is a non-trivial factor of n

GCD(a-b,n)
Then gcd(a-b,n)≡1, or gcd(a-b,n)=n

if gcd(a-b,n)≡1
or gcd(a-b,n)=n
if gcd(a-b,n)=n

then n divides a-b
so, a-b ≡0(mod n)

a≡b(mod n) ** Not allowed
to the gcd(a-b,n)=1

n has to divide a+b,
but if this is true a+b ≡ 0 (mod n),

so a ≡ -b (mod n)

How is this relevant to the Miller-Robin Test?

Suppose somewhere in the for loop the following:
bi≡b2i−1(mod n) which yields 1

Note: bi−1 6≡ ±1(mod n) Note: 12 ≡ 1(mod n)
The following is found: (bi−1)2 ≡ 1 ≡ 12(mod n)

Note: (bi−1) 6≡ ±1 (mod n)
So, n has to be composite.

If n is composite, then at least 3/4 of the choice for a can be proven composite

2

Example: Miller Robin
Test n = 25

Find m and k
m = n - 1 = 24 = 8*3 = 23*3

m and k are 3
Pick a, a = 7, ”Random” **For the purpose of demonstration

b0 = a ∗m(modn) ≡ a3(mod25)
≡ 73(mod 25)
≡ 72*7(mod 25)
≡ (-1)*7(mod 25)

b0=18

For i in 1 to 2
Compute bi ≡ bi−1(mod n)

If bi ≡ 1(mod n)
return composite

If bi ≡ −1(mod n)
return probably prime

bi ≡ 182 (mod 25)
≡ −72 (mod 25)
49=-1(mod 25)
bi ≡ −1(mod 25)

bi ≡ −1
return ”probably prime” according to Miller-Robin

Try a=4
b0 ≡ 43(mod 25)
≡64(mod 25)
≡14(mod 25)

b1 ≡ 142(mod 25)≡ 196(mod25) ≡ 21(mod25)}

b2 ≡ 212(mod25)
≡ 16(mod 25)

End of the loop

Composite confirmed by Miller Robinson Test

For i in 1 to 2
Compute bi ≡ bi−1(mod n)

Return Composite

3

If bi ≡-1 mod n
Return probably prime

If the for loop finishes then n is composite

3 RSA and Miller Robinson

RSA uses Miller Robinson
Breaking RSA to find factors of n?

What is the best way to factor n = pq?
Idea: Trial division, divide n by numbers ¡

√
n until a factor is found.

How long will it take to check all the numbers of the square root of n?
For a computer the size of a number of bits required to write it down: The size

of n is dlog2ne
Suppose, x = log2n

2x=n

The run-time of Trial Division is O(
√

2x)
This is an example of exponential run-time.

Goal: Find algorithm with Big O ¡ trial Division
Can the factory trick make factoring faster?

If a 6≡b (mod n),
with a2 ≡ b2 (mod n)

Idea 2:
Pick a random a with a square root of n ≤ a ≤n-1

Compute A ≡ a2 (mod n)
If A ≡ b2(mod n) for some b factor n

Example: 91
Pick a = 10

Compute a2 ≡ 100=9=32

Here, 102 ≡ 32 (mod 91)
but 10 6≡ 3,10 6≡ −3 (mod 91)

So here,
gcd(91, 10-3)=7

Since a is random
A ≡ a2(mod n) is essentially a random number mod n

What is probability that A ≡ ¡something¿ (mod n)
How many squares are there less than n?
The floor function of

√
n many squares

Probability that we get a square is the
√
n/n = 1/

√
n

4

Probability of success is 1/
√
n

This means the run-time ends up being O(
√
n)

This run time is also exponential.

How can an exponential run-time for factoring be beat?
Dixon’s factorization algorithm has quadratic run-time, which is faster then

exponential, but slower than polynomial run-time.

Dixon’s factorization algorithm has an approximate run time of O(e
√
x ln x)

5

