Cryptography, Nathan McNew

 Notes 04.16.2019Benjamin Pecson

April 16, 2019

1 Miller-Robin Primality Test

Compositeness Test
Test if n is prime
Write $\mathrm{n}-1$ as $m 2^{k}$, where m is odd. Choose a randomly in $2 \leq \mathrm{a} \leq \mathrm{n}-1$
Compute: $b_{0}=a^{m}(\bmod \mathrm{n})$
if $b_{0}= \pm 1$
Return probably prime
for i from 1 to $\mathrm{k}-1: b_{i} \equiv b_{i}(\bmod \mathrm{n})$
if $b_{i} \equiv-1(\bmod \mathrm{n})$
return probably prime
if $b_{i} \equiv 1(\bmod \mathrm{n})$
return composite
If during the for loop ± 1 is never produced return composite

Example,Given:
$b_{k} \equiv b_{0}^{2^{k}}$
$b_{k} \equiv a_{0}^{m \times 2^{k}}$
$b_{k} \equiv a^{n-1}(\bmod n)$
if $a^{n-1} \not \equiv 1(\bmod \mathrm{n})$
then n is composite by the Fermat Test
Another Example, Given:

$$
\begin{gathered}
\mathrm{a}, \mathrm{~b}(\bmod \mathrm{n}) \\
\text { where } \mathrm{a} \not \equiv \mathrm{~b}(\bmod \mathrm{n}) \\
\text { and a } \not \equiv \equiv-\mathrm{b}(\bmod \mathrm{n}) \\
\text { but } a^{2} \equiv b^{2}(\bmod \mathrm{n})
\end{gathered}
$$

then n is composite and $\operatorname{gcd}(\mathrm{a}-\mathrm{b}, \mathrm{n})$ is a non-trivial factor of n

2 Proof of the Factory Trick

> Suppose $\mathrm{a} \not \equiv \mathrm{b}(\bmod \mathrm{n})$
> and $\mathrm{a} \not \equiv-\mathrm{b}(\bmod \mathrm{n})$
> but $a^{2} \equiv b^{2}(\bmod \mathrm{n})$

Goal N has to be composite and a factor of n
Then $a^{2}-b^{2}$ equiv $0(\bmod \mathrm{n})$
$(a+b)(a-b) \equiv 0(\bmod n)$
so, n divides $(a+b)(a-b)$
Proof by Contradiction:
Suppose GCD is a non-trivial factor of n
$\operatorname{GCD}(\mathrm{a}-\mathrm{b}, \mathrm{n})$
Then $\operatorname{gcd}(a-b, n) \equiv 1$, or $\operatorname{gcd}(a-b, n)=n$
if $\operatorname{gcd}(a-b, n) \equiv 1$
or $\operatorname{gcd}(a-b, n)=n$
if $\operatorname{gcd}(a-b, n)=n$
then n divides $\mathrm{a}-\mathrm{b}$
so, $a-b \equiv 0(\bmod n)$
$\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n}) * *$ Not allowed
to the $\operatorname{gcd}(a-b, n)=1$
n has to divide $\mathrm{a}+\mathrm{b}$, but if this is true $a+b \equiv 0(\bmod n)$,

$$
\text { so } a \equiv-b(\bmod n)
$$

How is this relevant to the Miller-Robin Test?
Suppose somewhere in the for loop the following:
$b_{i} \equiv b_{i-1}^{2}(\bmod n)$ which yields 1
Note: $b_{i-1} \not \equiv \pm 1(\bmod n)$ Note: $1^{2} \equiv 1(\bmod n)$
The following is found: $\left(b_{i-1}\right)^{2} \equiv 1 \equiv 1^{2}(\bmod \mathrm{n})$
Note: $\left(b_{i-1}\right) \not \equiv \pm 1(\bmod n)$
So, n has to be composite.
If n is composite, then at least $3 / 4$ of the choice for a can be proven composite

> Example: Miller Robin
> Test $\mathrm{n}=25$
> Find m and k
> $\mathrm{~m}=\mathrm{n}-1=24=8^{*} 3=2^{3 *} 3$
> m and k are 3

Pick a, a $=7$, "Random" ${ }^{* *}$ For the purpose of demonstration

$$
b_{0}=a * m(\bmod n) \equiv a^{3}(\bmod 25)
$$

$\equiv 7^{3}(\bmod 25)$
$\equiv 7^{2 *} 7(\bmod 25)$
$\equiv(-1) * 7(\bmod 25)$

$$
b_{0}=18
$$

For i in 1 to 2 Compute $b_{i} \equiv b_{i-1}(\bmod \mathrm{n})$

If $b_{i} \equiv 1(\bmod \mathrm{n})$
return composite
If $b_{i} \equiv-1(\bmod \mathrm{n})$
return probably prime

$$
\begin{gathered}
b_{i} \equiv 18^{2}(\bmod 25) \\
\equiv-7^{2}(\bmod 25) \\
49=-1(\bmod 25) \\
b_{i} \equiv-1(\bmod 25) \\
b_{i} \equiv-1
\end{gathered}
$$

return "probably prime" according to Miller-Robin

> Try a=4
> $b_{0} \equiv 4^{3}(\bmod 25)$
> $\equiv 64(\bmod 25)$
> $\equiv 14(\bmod 25)$
> $\left.b_{1} \equiv 14^{2}(\bmod 25) \equiv 196(\bmod 25) \equiv 21(\bmod 25)\right\}$
> $b_{2} \equiv 21^{2}(\bmod 25)$
> $\equiv 16(\bmod 25)$
> End of the loop

Composite confirmed by Miller Robinson Test

For i in 1 to 2
Compute $b_{i} \equiv b_{i-1}(\bmod \mathrm{n})$
Return Composite

$$
\text { If } b_{i} \equiv-1 \bmod n
$$

Return probably prime
If the for loop finishes then n is composite

3 RSA and Miller Robinson

RSA uses Miller Robinson
Breaking RSA to find factors of n ?
What is the best way to factor $\mathrm{n}=\mathrm{pq}$?
Idea: Trial division, divide n by numbers $; \sqrt{n}$ until a factor is found.
How long will it take to check all the numbers of the square root of n ?
For a computer the size of a number of bits required to write it down: The size
of n is $\left\lceil\log _{2} n\right\rceil$
Suppose, $\mathrm{x}=\log _{2} \mathrm{n}$

$$
2^{x}=n
$$

The run-time of Trial Division is $\mathrm{O}\left(\sqrt{2^{x}}\right)$
This is an example of exponential run-time.
Goal: Find algorithm with Big O ; trial Division
Can the factory trick make factoring faster?
If $\mathrm{a} \neq \mathrm{b}(\bmod \mathrm{n})$,
with $a^{2} \equiv b^{2}(\bmod \mathrm{n})$
Idea 2 :
Pick a random a with a square root of $\mathrm{n} \leq a \leq \mathrm{n}-1$
Compute $\mathrm{A} \equiv a^{2}(\bmod \mathrm{n})$
If $\mathrm{A} \equiv b^{2}(\bmod \mathrm{n})$ for some b factor n
Example: 91
Pick $\mathrm{a}=10$
Compute $a^{2} \equiv 100=9=3^{2}$
Here, $10^{2} \equiv 3^{2}(\bmod 91)$
but $10 \not \equiv 3,10 \not \equiv-3(\bmod 91)$
So here,
$\operatorname{gcd}(91,10-3)=7$

Since a is random
$A \equiv a^{2}(\bmod \mathrm{n})$ is essentially a random number $\bmod \mathrm{n}$
What is probability that $A \equiv ¡$ something $\dot{i}(\bmod n)$
How many squares are there less than n ?
The floor function of \sqrt{n} many squares
Probability that we get a square is the $\sqrt{n} / n=1 / \sqrt{n}$

Probability of success is $1 / \sqrt{n}$
This means the run-time ends up being $\mathrm{O}(\sqrt{n})$
This run time is also exponential.
How can an exponential run-time for factoring be beat?
Dixon's factorization algorithm has quadratic run-time, which is faster then exponential, but slower than polynomial run-time.
Dixon's factorization algorithm has an approximate run time of $O\left(e^{\sqrt{x \ln x}}\right)$

