MATH 314 Spring 2019 - Class Notes

04/11/2019
Scribe: Jeremy Keith
Summary: In this class we covered two better primality tests than the ones we had previously covered that do not have the problem of Carmichael numbers. The Solovay-Strassen Primality Test and the Miller Rabin Primality Test.

Notes:

- We need better primality tests with no Carmichael numbers.
- Solovay-Strassen Primality Test
- Again more of a compositeness test than a primality test.
- Either composite or probably prime.
- Uses Jacobi Symbols
* If p is prime then $\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2}(\bmod \mathrm{p})$
- Steps of Solovay-Strassen Primality Test

1. Pick an a, $2 \leq a<p-1$
2. Compute $\left(\frac{a}{p}\right)$ (Jacobi Symbol)
3. Compute $a^{(p-1) / 2}(\bmod \mathrm{p})$
4. If they are not equal then return composite
5. Repeat these steps multiple times, if you don't ever get composite the conclusion is probably prime.

- Solovay-Strassen is better than Fermat
* If $a^{n-1} \equiv 1(\bmod \mathrm{n})$ but n is composite, n is a pseudoprime base a.
* If $\left(\frac{a}{n}\right) \equiv a^{(n-1) / 2}(\bmod \mathrm{n})$ but n is composite, n is a base a euler pseudoprime.
* There are a lot more Fermat pseudoprimes than Solovay-Strassen pseudoprimes
- Miller Rabin Primality Test
- Again more of a compositeness test than a primality test.
- Either composite or probably prime.
- Take $n-1=2^{k} \cdot m$ where m is odd
- Like Fermat's with extra steps.
- Pick an a, $2 \leq a<n-1$
- We're going to compute $a^{n-1}(\bmod \mathrm{n})$
- Steps of Miller Rabin Primality Test

1. Compute $\mathrm{b}_{0} \equiv a^{m}(\bmod \mathrm{n})$

* If $\mathrm{b}_{0}= \pm 1(\bmod \mathrm{n})$, return probably prime

2. For i in 1 to $(k-1)$

* Compute $\mathrm{b}_{i} \equiv\left(b_{i-1}\right)^{2}(\bmod \mathrm{n})$
- If $\mathrm{b}_{i}=1(\bmod \mathrm{n})$, return composite
- If $\mathrm{b}_{i}=-1(\bmod \mathrm{n})$, return probably prime
- If we finish the for loop, $\mathrm{b}_{k-1} \neq \pm 1(\bmod \mathrm{n})$, return composite

3. Repeat for multiple values of a. If you never return composite, the number is probably prime.
