MATH 314 Spring 2019 - Class Notes

04/11/2019

Scribe: Jeremy Keith

Summary: In this class we covered two better primality tests than the ones we had previously covered that do not have the problem of Carmichael numbers. The Solovay-Strassen Primality Test and the Miller Rabin Primality Test.

Notes:

- We need better primality tests with no Carmichael numbers.
- Solovay-Strassen Primality Test
 - Again more of a compositeness test than a primality test.
 - Either composite or probably prime.
 - Uses Jacobi Symbols

* If p is prime then
$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \pmod{p}$$

- Steps of Solovay-Strassen Primality Test

1. Pick an a,
$$2 \le a 2. Compute $\left(\frac{a}{p}\right)$ (Jacobi Symbol)$$

- 3. Compute $a^{(p-1)/2} \pmod{p}$
- 4. If they are not equal then return composite
- 5. Repeat these steps multiple times, if you don't ever get composite the conclusion is probably prime.
- Solovay-Strassen is better than Fermat
 - * If $a^{n-1} \equiv 1 \pmod{n}$ but n is composite, n is a pseudoprime base a.
 - * If $\left(\frac{a}{n}\right) \equiv a^{(n-1)/2} \pmod{n}$ but n is composite, n is a base a euler pseudoprime.
 - * There are a lot more Fermat pseudoprimes than Solovay-Strassen pseudoprimes
- Miller Rabin Primality Test
 - Again more of a compositeness test than a primality test.
 - Either composite or probably prime.
 - Take $n 1 = 2^k \cdot m$ where m is odd

- Like Fermat's with extra steps.
- Pick an a
, $2 \le a < n-1$
- We're going to compute $a^{n-1} \pmod{n}$
- Steps of Miller Rabin Primality Test
 - 1. Compute $b_0 \equiv a^m \pmod{n}$
 - * If $b_0 = \pm 1 \pmod{n}$, return probably prime
 - 2. For i in 1 to (k 1)
 - * Compute $\mathbf{b}_i \equiv (b_{i-1})^2 \pmod{\mathbf{n}}$
 - · If $\mathbf{b}_i = 1 \pmod{\mathbf{n}}$, return composite
 - If $b_i = -1 \pmod{n}$, return probably prime
 - · If we finish the for loop, $b_{k-1} \neq \pm 1 \pmod{n}$, return composite
 - 3. Repeat for multiple values of a. If you never return composite, the number is probably prime.