MATH 314 Spring 2019 - Class Notes

02/18/2019

Scribe: Trung Nguyen

Summary: Today we covered fields, polynomials, operations within fields and irreducible polynomials.

Notes:

Goal:

- Find F_{2^n}
- Finite Fields with 2^n elements
- <u>Note</u>: This field is not $Z_{2^n} \pmod{2^n}$

Replace Z by $F_2[x]$

- R[x] polynomials with coefficients in R
- $F_2[x]$ polynomials with coefficients in F_2
- $F_2 = \{0,1\}$

Example:

$$g(x) = x^4 + x + 1 \in F[x]$$

$$f(x = x^5 + x \in F_2[x])$$

$$f(x) + g(x) = (x^5 + x) + (x^4 + x + 1) = x^5 + x^4 + 1 \text{ (+ and - are the same)}$$

$$f(x) \times g(x) = (x^5 + x) \times (x^4 + x + 1) = (x^9 + x^6 + x^5) + (x^5 + x^2 + x)$$

$$= x^9 + x^6 + x^2 + x$$

Division with remainder: remainder has degree, smaller than the quotient

$$\frac{x^{4} + x + 1}{x^{5} + x} = \frac{x^{5} - x^{2} - x}{-x^{2}}$$

$$\frac{x^{5} + x \equiv x^{2} \pmod{x^{4} + x + 1}}{(\text{mod } x^{4} + x + 1)} (+ \text{ and - are the same})$$

In order to get a field we need a modulus that doesn't have a divisor -We call this polynomial irreducible

Example: $x^2 + x + 1$

Find Polynomials that are smaller t: $x,\,x+1$, 1, 0 (no need to check for 1 and 0) check

$$x + 1$$

$$x + 1$$

$$x^{2} + x + 1$$

$$-x^{2}$$

$$x$$

$$-x$$

$$1$$

$$x$$

$$x + 1)$$

$$x^{2} + x + 1$$

$$-x^{2} - x$$

$$1$$

So the polynomial (mod $x^2 + x + 1$) forms a field, this is F_4 . + $\begin{vmatrix} 0 & 1 & x & x+1 \end{vmatrix}$

+			l	х	x+1
0	0	-	1	х	x+1
1	1	(0 2	x+1	х
х	X	X-	+1	0	1
x+1	x+	-1 :	X	1	0
*	0	1	Х	:	x+1
0	0	0	0		0
1	0	1	х		x+1
х	0	х	x +	1	1
x+1	0	x+1	1		х

To make F_{2^n} , we pick F(x) to an irreducible polynomial in F[x] of degree n Then do arimethic mod F(x) to get $F_2[x]$

Fact: There exist irreducible polynomials of every degree