MATH 314 Spring 2019 - Class Notes

02/18/2019
Scribe: Trung Nguyen
Summary: Today we covered fields, polynomials, operations within fields and irreducible polynomials.

Notes:

Goal:

- Find $F_{2^{n}}$
- Finite Fields with 2^{n} elements
- Note: This field is not $Z_{2^{n}}\left(\bmod 2^{n}\right)$

Replace Z by $F_{2}[x]$

- $\mathrm{R}[\mathrm{x}]$ polynomials with coefficients in R
- $F_{2}[x]$ polynomials with coefficients in F_{2}
- $F_{2}=\{0,1\}$

Example:

$g(x)=x^{4}+x+1 \in F[x]$
$f\left(x=x^{5}+x \in F_{2}[x]\right)$
$f(x)+g(x)=\left(x^{5}+x\right)+\left(x^{4}+x+1\right)=x^{5}+x^{4}+1(+$ and - are the same $)$
$f(x) \times g(x)=\left(x^{5}+x\right) \times\left(x^{4}+x+1\right)=\left(x^{9}+x^{6}+x^{5}\right)+\left(x^{5}+x^{2}+x\right)$
$=x^{9}+x^{6}+x^{2}+x$

Division with remainder:
remainder has degree, smaller than the quotient

$$
\left.\begin{array}{rl}
\left.x^{4}+x+1\right) & \frac{x}{x^{5}+x} \\
& \frac{-x^{5}-x^{2}-x}{-x^{2}}
\end{array} x^{5}+x \equiv x^{2}\left(\bmod x^{4}+x+1\right)(+ \text { and }- \text { are the same })\right) ~ l
$$

In order to get a field we need a modulus that doesn't have a divisor -We call this polynomial irreducicble

Example: $x^{2}+x+1$
Find Polynomials that are smaller $\mathrm{t}: ~ x, x+1,1,0$ (no need to check for 1 and 0) check

$$
\begin{aligned}
& \text { x) } \frac{x+1}{x^{2}+x+1} \\
& -x^{2} \\
& x \\
& -x \\
& 1 \\
& x+1) \frac{x}{x^{2}+x+1} \\
& -x^{2}-x
\end{aligned}
$$

So the polynomial $\left(\bmod x^{2}+x+1\right)$ forms a field, this is F_{4}.

+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0

$*$	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$x+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	x

To make $F_{2^{n}}$, we pick $\mathrm{F}(\mathrm{x})$ to an irreducible polynomial in $\mathrm{F}[\mathrm{x}]$ of degree n Then do arimethic $\bmod \mathrm{F}(\mathrm{x})$ to get $F_{2}[x]$

Fact: There exist irreducible polynomials of every degree

