MATH 314 Spring 2018 - Class Notes

2/26/2019
Scribe: Caitlin Nanashko
Summary: Today's class covered the Chinese Remainder Theorem
Notes: Chinese Remainder Theorem (CRT)

- If m and n are coprime $(g c d(m, n)=1)$ then the equations $x \equiv a(\operatorname{modm})$ and $x \equiv b(\bmod n)$ have a unique solution $(\bmod m n)$ for any $a+b$

Example 1: Find a solution to $x \equiv 3(\bmod 7)$ and $x \equiv 12(\bmod 13)$.
CRT says there is a solution $(\bmod 91)$

$$
\begin{gathered}
x \equiv 3(\bmod 7) \text { means } \mathrm{x}=3+7 \mathrm{k} \text { for some integer } \mathrm{k} \\
\text { plug this into } x \equiv 12(\bmod 13) \\
3+7 k \equiv 12(\bmod 13) \\
7 k \equiv 9(\bmod 13) \\
\text { Need } 7^{-1}(\bmod 13) \\
7^{-1} \equiv 2(\bmod 13) \\
2(7 k) \equiv 2(9)(\bmod 13) \\
k \equiv 18(\bmod 13) \\
k \equiv 5(\bmod 13)
\end{gathered}
$$

- If $n=a b$ where $\operatorname{gcd}(a, b)=1$ then if $x(\bmod n)$ is invertible and $x(\bmod a)$ and $x(\bmod$ b) are invertible

$$
\varphi \text { is greek letter phi you could also see it as } \phi
$$

- Using the CRT we can take any invertible residue (mod a) and one (modb) and find a unique solution to both $(\bmod n)$ that is also invertible

$$
\begin{gathered}
\varphi(a) \text { invertible residue }(\bmod \mathrm{a}) \\
\varphi(b) \text { invertible residue }(\bmod \mathrm{b}) \\
\varphi(n)=\varphi(a) \varphi(b) \text { if } \mathrm{n}=\mathrm{ab} \text { and } \operatorname{gcd}(\mathrm{a}, \mathrm{~b})=1
\end{gathered}
$$

$$
\begin{aligned}
& \varphi(25)=\frac{4}{5}(25)=4 * 5=20 \\
& \varphi(125)=\left(5^{3}\right)=\frac{4}{5}(125)=4 * 25=100 \\
& \varphi\left(p^{2}\right)=\frac{p-1}{p}\left(p^{2}\right) \\
& \\
& \qquad \begin{aligned}
& \varphi(120)=\varphi(5) * \varphi(24) \\
=\varphi(5) * \varphi(3) & * \varphi\left(2^{3}\right)=(5-1)(3-1)(2-1)\left(2^{2}\right) \\
& =(4)(2)(1)\left(2^{2}\right)=32
\end{aligned}
\end{aligned}
$$

Fuler's Theorem:if a is coprime to n then $a^{\varphi(n)} \equiv 1$ (modn)
Note:if $\mathrm{n}=\mathrm{p}$ is prime then $\varphi(p)=p-1 a^{p-1} \equiv 1(\bmod p)$
Example: Compute $7^{17}(\bmod 15)$
Use Eucler's Theorem $\varphi(15)=\varphi(3) \varphi(5)=(3-1)(5-1)=8$

$$
\begin{gathered}
=7^{8} \equiv 1(\bmod 15 \\
7^{17} \equiv 7^{8} * 7^{8} * 7^{1} \equiv 7(\bmod 15)
\end{gathered}
$$

In a ring we can add, subtract, and multiply, but we can't always divide
Sometimes we have a ring where we can divide by everything except 0 these are fields.
Important fact about fields: there is at most one finite field with n elements for any n.

