MATH 314 Spring 2018 - Class Notes

1/31/2019
Scribe: Kyle Roberts
Summary: The first real crypto-cipher being the Caesar or shift cipher. How to encrypt a message using modular arithmetic with an encryption function and how to decrypt using a decryption function. Plan of attacks against the Caesar cipher and how to make the encryption stronger.

Notes: Caesar cipher or shift cipher

- Shift alphabet to the right using a key (in this case, a number 0-25)
- Map letters to numbers to mathematically represent them (a:0, b:1, ... z:25)
- Encryption Function: $E(x)->x+K(\bmod 26)$ (Where K is the key or shift)
- Key is how much to shift the alphabet
- We say that a and b are equivalent modulo m where: $a \equiv b(\bmod m)$ if they have the same remainder when divided by m (Or $\mathrm{a}-\mathrm{b}$ is divisible by m)

Example:

$\mathrm{K}=7$
Encrypt the plain text "bat"
b:1, a:0, t:19

$$
\begin{gathered}
E(1)->1+7 \equiv 8 \quad(\bmod 26)->I \\
E(0)->0+7 \equiv 7 \quad(\bmod 26)->H \\
E(19)->19+7 \equiv 26 \quad(\bmod 26) \equiv 0 \quad(\bmod 26)->A
\end{gathered}
$$

Encrypted text is "IHA" How to decrypt:

$$
\begin{gathered}
D(x)=x-k \quad(\bmod 26) \\
D(8)=8-7 \equiv 1 \quad(\bmod 26) \\
D(7)=7-7 \equiv 0 \quad(\bmod 26) \\
D(0)=0-7 \equiv-7 \quad(\bmod 26) \equiv 19 \quad(\bmod 26)
\end{gathered}
$$

The resulting number maps to the mapped letter of the alphabet

- Alice encrypts plain text to cipher text. Eve is eavesdropping and can read the cipher text. Bob receives the cipher text and uses the key to decrypt to plain text.
- Kerchoff's Principle: When analyzing the security of a cipher - one should assume the attacker knows everything about the system except for the key being used.
- The three types of attacks against cryptosystems are:

1. Cipher text only: Attacker only has access to encrypted messages and wants to recover the key
2. Known plain text attacks: Attacker knows a plain text message as well as its cipher text and wants to recover the key
3. Chosen plain text attack: Attacker gets a copy of the encryption machine and encrypts any plain text he/she wants and finds out what the cipher text is and therefore knows the key

These attacks against the Caesar cipher:

1. Cipher text only:

- Brute force: Try all 26 possible keys and look for the messages that carry information
- Frequency attack: Use the frequency of letters in the plain text to make an educated guess, but is only useful if there is a lot of letters

2. Known plain text attack: Knows "n" maps to "Y"

$$
\begin{gathered}
n->13 \mathrm{Y}->24 \\
E(13)=13+K \quad(\bmod 26) \\
K=24-13=11
\end{gathered}
$$

Key is 11, so shift the alphabet 11 letters to the right.
3. Chosen plain text: Choose "a", whichever it encrypts to, use the equation above to get the key

How to make the Caesar cipher harder to decrypt:

- Need to increase number of keys
- Consider multiplication in modular arithmetic

$$
a * b \quad(\bmod 26)
$$

- Sometimes we can do division (Though we might have more than one answer)

