Mission 6

Name:

Use the CoCalc code for SDES to do the following problems. Make sure to show all of your work in the CoCalc assignment, as it will be collected as well

Part 1: Use a meet in the middle attack to recover the two keys K₁ and K₂ used in an implementation of 2SDES (Double encryption with SDES) using **4 rounds**. (Refer to the handout on CoCalc)

First you encrypt P=[0,1,0,1,0,1,0,1,0,1] and get C=[0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0]. **a.** Use a brute force attack to find all possible values of K_1 and K_2 . How many seconds does it take?

b. Use the Meet-In-The-Middle attack to find the same information. Are they the same as the ones you found by brute force?

c. How many seconds did this take?

d. How many encryptions does each method require? (In other words, how many total calls to SDES are used in each method?) How many times faster would you expect a meet in the middle attack to be in this situation? (Recall, the SDES keys have 9 bits **not** 56 bits like DES...)

Now you find that encrypting P*=[0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1] with the same keys produces the ciphertext C*=[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0].

e. Repeat the meet in the middle attack, and compare the pairs of keys you got using P and C to obtain the binary values of K_1 and K_2 :

f. Use the int2bin function to convert these numbers back into binary and record them here:

K₁=_____

K₂=_____

Part 2: Modes of Operation To encrypt $P=[0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,24 bits)$ with SDES, using the key $K=[0,1,0,1,1,1,0,1,1]$ we break P into $P_1=[0,0,0,0,0,1,0,1,0,0,1,1]$ and $P_2=[1,0,0,1,0,1,1,1,0,1,1,1]$. Now, use the encrypt these blocks using each mode of operation discussed in class.	0,1,0,1,1,1,0,1,1,1] (which has the two blocks he SDES code in CoCalc
Electronic Codebook (ECB)	
$C_1 = E(P_1) =$	
$C_2 = E(P_2) = $	
Cipher Block Chaining (CBC) use C ₀ =[0,1,0,1,0,1,0,1,0,1,0,1]	
$P_1 \oplus C_0 =$	
$\mathbf{C}_1 = \mathbf{E}(\mathbf{P}_1 \oplus \mathbf{C}_0) = _$	
$P_2 \oplus C_1 =$	
$C_2 = E(P_2 \oplus C_1) = _$	
Cipher Feedback (CFB) use C ₀ =[0,1,0,1,0,1,0,1,0,1,0,1]	
E(C ₀)=	
$\mathbf{C}_1 = \mathbf{P}_1 \oplus \mathbf{E}(\mathbf{C}_0) = _$	
E(C ₁)=	
$C_2 = P_2 \oplus E(C_1) = _$	
Output Feedback (OFB) use O ₀ =[0,1,0,1,0,1,0,1,0,1,0,1]	
E(O ₀)=	
$C_1 = P_1 \oplus E(O_0) = _$	
E(O ₁)=	
$C_2 = P_2 \oplus E(O_1) = _$	
Counter (CTR) use X ₁ =[0,0,0,0,0,0,0,0,0,0,0,1]	
$E(X_1) = $	
$C_1 = P_1 \oplus E(X_1) = _$	
$X_2 = X_1 + 1 = $	
$E(X_2) = $	
$C_2 = P_2 \oplus E(X_2) = _$	