Name:
Use the CoCalc code for SDES to do the following problems. Make sure to show all of your work in the CoCalc assignment, as it will be collected as well
Part 1: Use a meet in the middle attack to recover the two keys K_{1} and K_{2} used in an implementation of 2SDES (Double encryption with SDES) using 4 rounds. (Refer to the handout on CoCalc)

First you encrypt $\mathrm{P}=[0,1,0,1,0,1,0,1,0,1,0,1]$ and get $\mathrm{C}=[0,1,0,1,1,1,1,0,0,1,1,0]$.
a. Use a brute force attack to find all possible values of K_{1} and K_{2}. How many seconds does it take?
b. Use the Meet-In-The-Middle attack to find the same information. Are they the same as the ones you found by brute force?
c. How many seconds did this take?
d. How many encryptions does each method require? (In other words, how many total calls to SDES are used in each method?) How many times faster would you expect a meet in the middle attack to be in this situation? (Recall, the SDES keys have 9 bits not 56 bits like DES...)

Now you find that encrypting $\mathrm{P}^{*}=[0,0,1,0,0,1,0,0,1,0,0,1]$ with the same keys produces the ciphertext $C^{*}=[1,1,0,0,0,1,0,1,0,0,1,0]$.
e. Repeat the meet in the middle attack, and compare the pairs of keys you got using P and C to obtain the binary values of K_{1} and K_{2} :
f. Use the int2bin function to convert these numbers back into binary and record them here:
$\mathrm{K}_{1}=$ \qquad
$\mathrm{K}_{2}=$

Part 2: Modes of Operation To encrypt $\mathrm{P}=[0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,1,1]$ (which has 24 bits) with SDES, using the key $\mathrm{K}=[0,1,0,1,1,1,0,1,1]$ we break P into the two blocks $\mathrm{P}_{1}=[0,0,0,0,0,1,0,1,0,0,1,1]$ and $\mathrm{P}_{2}=[1,0,0,1,0,1,1,1,0,1,1,1]$. Now, use the SDES code in CoCalc encrypt these blocks using each mode of operation discussed in class.

Electronic Codebook (ECB)
$\mathrm{C}_{1}=\mathrm{E}\left(\mathrm{P}_{1}\right)=$ \qquad
$\mathrm{C}_{2}=\mathrm{E}\left(\mathrm{P}_{2}\right)=$ \qquad

Cipher Block Chaining (CBC) use $\mathrm{C}_{0}=[0,1,0,1,0,1,0,1,0,1,0,1]$
$\mathrm{P}_{1} \oplus \mathrm{C}_{0}=$ \qquad

$$
\mathrm{C}_{1}=\mathrm{E}\left(\mathrm{P}_{1} \oplus \mathrm{C}_{0}\right)=
$$

\qquad
$\mathrm{P}_{2} \oplus \mathrm{C}_{1}=$ \qquad

$$
\mathrm{C}_{2}=\mathrm{E}\left(\mathrm{P}_{2} \oplus \mathrm{C}_{1}\right)=
$$

\qquad

Cipher Feedback (CFB) use $\mathrm{C}_{0}=[0,1,0,1,0,1,0,1,0,1,0,1]$
$\mathrm{E}\left(\mathrm{C}_{0}\right)=$ \qquad

$$
\mathrm{C}_{1}=\mathrm{P}_{1} \oplus \mathrm{E}\left(\mathrm{C}_{0}\right)=
$$

\qquad
$\mathrm{E}\left(\mathrm{C}_{1}\right)=$ \qquad

$$
\mathrm{C}_{2}=\mathrm{P}_{2} \oplus \mathrm{E}\left(\mathrm{C}_{1}\right)=
$$

\qquad

Output Feedback (OFB) use $\mathrm{O}_{0}=[0,1,0,1,0,1,0,1,0,1,0,1]$
$\mathrm{E}\left(\mathrm{O}_{0}\right)=$ \qquad

$$
\mathrm{C}_{1}=\mathrm{P}_{1} \oplus \mathrm{E}\left(\mathrm{O}_{0}\right)=
$$

\qquad
$\mathrm{E}\left(\mathrm{O}_{1}\right)=$ \qquad

$$
\mathrm{C}_{2}=\mathrm{P}_{2} \oplus \mathrm{E}\left(\mathrm{O}_{1}\right)=
$$

\qquad

Counter (CTR) use $\mathrm{X}_{1}=[0,0,0,0,0,0,0,0,0,0,0,1]$
$E\left(X_{1}\right)=$ \qquad

$$
\mathrm{C}_{1}=\mathrm{P}_{1} \oplus \mathrm{E}\left(\mathrm{X}_{1}\right)=
$$

\qquad
$\mathrm{X}_{2}=\mathrm{X}_{1}+1=$ \qquad
$\mathrm{E}\left(\mathrm{X}_{2}\right)=$ \qquad
$\mathrm{C}_{2}=\mathrm{P}_{2} \oplus \mathrm{E}\left(\mathrm{X}_{2}\right)=$ \qquad

