MATH 314 Spring 2018 - Class Notes

10/14/2015
Scribe: Samuel Naranjo
Summary: This class covered the Digital Signature Algorithm (DSA). There was also an introduction to Elliptic Curves.

Notes: Alice wants to create a public key:

- 2 primes, $\mathrm{p}(200$ digits $)$, and $\mathrm{q}(50$ digits $)$ where $q \mid(p-1)$
- let g be a primitive root $(\bmod \mathrm{p})$
- let $\alpha=g^{(p-1) / q}$
- Note: $\alpha^{q}=\left(g^{(p-1) / q}\right)^{q} \equiv 1(\bmod p)$, alpha is not a primitive root. Alice picks a secret number $\mathrm{q} \beta \equiv \alpha^{q}(\bmod p)$.
- Thus, the public key is ($\mathrm{p}, \mathrm{q}, \alpha, \beta$).

Suppose Alice wants to sign the message m. To sign the m, Alice picks a new random number k , where k is $2 \leq k<q-1$.

- $r=\left(\alpha^{k}(\bmod p)\right)(\bmod q)$
- $s=k^{-1}(m+a r)(\bmod q)$

She sends ($\mathrm{m},(\mathrm{r}, \mathrm{s})$).
Bob receives $(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ and wants to verify the signature. He computes

- $U_{1}=s^{-1} \times m(\operatorname{modq})$
- $U_{2}=s^{-1} \times r(\bmod q)$
- He computes $V=\left(\alpha^{U_{1}} \times \beta^{U_{2}}(\bmod p)\right)(\bmod q)$.

If $V \equiv R$ then Bob accepts the signature, else Bob rejects it.
Why should $V=R$?

1. $S=k^{-1}(m+a r)(\bmod q)$
2. $k S=m+\operatorname{ar}(\bmod q)$
3. $k=s^{-1} \times m+\left(a S^{-1} r\right)(\bmod q)$
4. $r=\alpha^{k}=\alpha^{U_{1}+a} \times U_{2}$
5. $\equiv \alpha^{U_{1}}\left(\alpha^{a}\right)^{U_{2}}$
6. $\equiv \alpha^{U_{1}} \times \beta^{U_{2}} \equiv(v(\bmod p)(\bmod q))$

Nifty Fact: Pick two points on an elliptic curve and draw the line between them. It always* intersects the curve at a third point.

- Define arithmetic of points on an elliptic curve to be i.
- Draw the line between points to get a third point (R), reflect this point across the x -axis.
- Suppose $p=\left(x_{1}, y_{1}\right)$ and $q=\left(x_{2}, y_{2}\right)$ and we want to find the third point $r\left(X_{3}, y_{3}\right)$. Find the equation for the line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
- Want to find $\left(x_{3}, y_{3}\right)$ on both $y=m x+c$ and $y^{2}=x^{3}+a x+b$
- $(m x+c)^{2}=x^{3}+a x+b$
- $m^{2}+x^{2}+2 m c+c^{2}=x^{3}+a x+b$
- $0=x^{3}-m^{2} x^{2}+(a-2 m c) x+\left(b-c^{2}\right)$
- $=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$

