MATH 314 Spring 2018 - Class Notes

04/05/2018

Scribe: Long Chen

SAES plaintext \downarrow Add RK_0 \downarrow Round One steps: **S**ubstitute Shift Rows Mix Columns Add RK_1 \downarrow Round Two Steps: **S**ubstitute Shift Rows Add RK_2 \downarrow Cipher text $\mathbf{S}\mathrm{box}$ take in 4 bits outputs 4 bits input (b_0, b_1, b_2, b_3) $b_0X^3 + b_1x^2 + b_2X + b_3 \in \mathbb{F}_{16}(moduloX^4 + x + 1)$ take inverse $F^{-1}(x) = C_0 x^3 + C_1 X^2 + C_2 X + C_3$ \downarrow (C_0, C_1, C_2, C_3) Now multiply on the left by the matrix **Output:** $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} d_0 \\ d_1 \\ d_2 \\ d_3 \end{pmatrix}$ $1 \ 0 \ 1 \ 1$ **Compute Sbox output** for $1001 = 1x^3 + 0x^2 + 0x + 1$ we get $x^3 + 1 \in \mathbb{F}_{16}$ Invert this using Euclid's Algorithm

 $(x^4 + x + 1)/(x^3 + 1) = x \mathbf{R1}$ $(x^4 + x + 1) = x(x^3 + 1) + 1$ $(x^4 + x + 1) + x(x^3 + 1) = 1$ $(x^3 + 1)^{-1} \equiv x(modx^4 + x + 1)$ Now multiply by matrix $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ $+ \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$ $\begin{array}{c} 0 \\ 1 \end{array}$ output 0010 SAES S-Box 01 1011 N/A00 00 1001 0100 1010 1011011101 0001 10000101 10 0110 0010 0000 0011 11 1100 1110 1111 1011key expansion (How to get round keys) $k_0 = k(masterkey)$ Break this into two words w_0, w_1 $\mathbf{w}_2 = g(w_1) \oplus w_0$ $w_3 = w_2 \oplus w_1$ $w_4 = g(w_3) \oplus w_2$ $w_5 = w_4 \oplus w_3$ $k_1 = w_2 w_3$ $\mathbf{k}_2 = w_4 w_5$

SAES g function

- First, separate a plain text to N_0 and N_1 , two different parts.
- Then, stwitch N_0 and N_1 , and send them to the S-box.
- Calculate and get the result from $X^{i+1} = (modx^4 + x + 1)$, where i = 1 for W_1 and i = 2 for W_2 , then multiply with N_1 after the oringal one came out of the S-box.

- N_0 stay the same after it came out of the S-box, and we combine new N_1 and N_0 to get a piece for a new output.
- The iteration will continues depends on the number of repeatation it was asked.

here are some description of the terms in steps in SAES.

First we will have a plain text, and at least two keys for at least one round. Then we XOR the plain text and the first key K_0 , M_1

Substitute

put M_1 to S-box to obtain a new M_1

Shift Row shift left row with right row(below is just an example) $\begin{pmatrix} 1100 & 1100 \\ 1110 & 1111 \end{pmatrix} \begin{pmatrix} 1100 & 1100 \\ 1111 & 1110 \end{pmatrix}$

Mix Column

Convert M_1 to a two by two matix(below is just an example) $\begin{pmatrix} 1100 & 1100 \\ 1111 & 1110 \end{pmatrix} \rightarrow \begin{pmatrix} X^3 + X^2 & X^3 + X^2 \\ X^3 + X^2 + X + 1 & X^3 + X^2 + X \end{pmatrix}$ encryption matrix multiply the M_1 matrix $\begin{pmatrix} 1 & X^2 \\ X^2 & 1 \end{pmatrix} \mathbf{x} \begin{pmatrix} X^3 + X^2 & X^3 + X^2 \\ X^3 + X^2 + X + 1 & X^3 + X^2 + X \end{pmatrix} =$

$$\begin{pmatrix} X^{5} + X^{4} & X^{5} + X^{4} + X^{3} \\ X^{5} + X^{4} + X^{3} + X^{2} + X + 1 & X^{5} + X^{4} + X^{3} + X^{2} + X \end{pmatrix}$$

then reduce mod to $X^{4} + X + 1$

$$\left(\begin{array}{cc} X^2 + 1 & 1 \\ X^3 + X & X^3 + X + 1 \end{array}\right)$$

convert the two by two matrix back to binary numbers 0101000110101011

Add Round Key

Add the second key K_1 to complete the first round of the SAES

And here you can obtain the cipher text after first round.

To perform n rounds of the SAES, you just need n-1 numbers of keys to complete the process above for n-1 times, and that's it!