MATH 314 Spring 2018 - Class Notes

$$
04 / 05 / 2018
$$

Scribe: Long Chen

SAES
 plaintext
 \downarrow
 Add $R K_{0}$
 \downarrow
 Round One steps:
 Substitute
 Shift Rows
 Mix Columns
 Add $R K_{1}$
 \downarrow
 Round Two Steps:
 Substitute
 Shift Rows
 Add $R K_{2}$
 \downarrow
 Cipher text

Sbox
take in 4 bits
outputs 4 bits
input $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$
$b_{0} X^{3}+b_{1} x^{2}+b_{2} X+b_{3} \in \mathbb{F}_{16}\left(\right.$ modulo $\left.X^{4}+x+1\right)$
take inverse
$F^{-1}(x)=C_{0} x^{3}+C_{1} X^{2}+C_{2} X+C_{3}$
\downarrow
$\left(C_{0}, C_{1}, C_{2}, C_{3}\right)$
Now multiply on the left by the matrix
Output:
$\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}C_{0} \\ C_{1} \\ C_{2} \\ C_{3}\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{c}d_{0} \\ d_{1} \\ d_{2} \\ d_{3}\end{array}\right)$
Compute Sbox output
for $1001=1 x^{3}+0 x^{2}+0 x+1$
we get $x^{3}+1 \in \mathbb{F}_{16}$
Invert this using Euclid's Algorithm

$$
\begin{aligned}
& \left(x^{4}+x+1\right) /\left(x^{3}+1\right)=x \text { R1 } \\
& \left(x^{4}+x+1\right)=x\left(x^{3}+1\right)+1 \\
& \left(x^{4}+x+1\right)+x\left(x^{3}+1\right)=1 \\
& \left(x^{3}+1\right)^{-1} \equiv x\left(\bmod x^{4}+x+1\right) \\
& \downarrow
\end{aligned}
$$

Now multiply by matrix
$\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)$
$\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)+\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$
output 0010

SAES S-Box

N /A	00	01	10	11
00	1001	0100	1010	1011
01	1101	0001	1000	0101
10	0110	0010	0000	0011
11	1100	1110	1111	1011

key expansion
(How to get round keys)
$k_{0}=k$ (masterkey)
Break this into two words w_{0}, w_{1}
$\mathbf{w}_{2}=g\left(w_{1}\right) \oplus w_{0}$
$w_{3}=w_{2} \oplus w_{1}$
$w_{4}=g\left(w_{3}\right) \oplus w_{2}$
$w_{5}=w_{4} \oplus w_{3}$
$k_{1}=w_{2} w_{3}$
$\mathbf{k}_{2}=w_{4} w_{5}$

SAES g function

- First, separate a plain text to N_{0} and N_{1}, two different parts.
- Then, stwitch N_{0} and N_{1}, and send them to the S-box.
- Calculate and get the result from $X^{i+1}=\left(\bmod x^{4}+x+1\right)$, where $i=1$ for W_{1} and $i=2$ for W_{2}, then multiply with N_{1} after the oringal one came out of the S-box.
- N_{0} stay the same after it came out of the S -box, and we combine new N_{1} and N_{0} to get a piece for a new output.
- The iteration will continues depends on the number of repeatation it was asked.
here are some description of the terms in steps in SAES.
First we will have a plain text, and at least two keys for at least one round. Then we XOR the plain text and the first key K_{0}, M_{1}

Substitute
put M_{1} to S -box to obtain a new M_{1}
Shift Row
shift left row with right row(below is just an example)
$\left(\begin{array}{ll}1100 & 1100 \\ 1110 & 1111\end{array}\right)\left(\begin{array}{ll}1100 & 1100 \\ 1111 & 1110\end{array}\right)$
Mix Column
Convert M_{1} to a two by two matix(below is just an example)
$\left(\begin{array}{cc}1100 & 1100 \\ 1111 & 1110\end{array}\right) \rightarrow\left(\begin{array}{cc}X^{3}+X^{2} & X^{3}+X^{2} \\ X^{3}+X^{2}+X+1 & X^{3}+X^{2}+X\end{array}\right)$
encryption matrix multiply the M_{1} matrix
$\left(\begin{array}{cc}1 & X^{2} \\ X^{2} & 1\end{array}\right) \times\left(\begin{array}{cc}X^{3}+X^{2} & X^{3}+X^{2} \\ X^{3}+X^{2}+X+1 & X^{3}+X^{2}+X\end{array}\right)=$
$\left(\begin{array}{cc}X^{5}+X^{4} & X^{5}+X^{4}+X^{3} \\ X^{5}+X^{4}+X^{3}+X^{2}+X+1 & X^{5}+X^{4}+X^{3}+X^{2}+X\end{array}\right)$
then reduce \bmod to $X^{4}+X+1$
$\left(\begin{array}{cc}X^{2}+1 & 1 \\ X^{3}+X & X^{3}+X+1\end{array}\right)$
convert the two by two matrix back to binary numbers
0101000110101011

Add Round Key

Add the second key K_{1} to complete the first round of the SAES
And here you can obtain the cipher text after first round.
To perform n rounds of the SAES, you just need $n-1$ numbers of keys to complete the process above for $n-1$ times, and that's it!

