MATH 314 Spring 2018 - Class Notes

4/30/2015
Scribe: Mark Padilla
Summary: Hash Functions and their Properties

Notes:

- Hash Functions $h(x)$

- A functions that takes in a long message m and produces a much shorter output called a digest
- If two different inputs to a hash functions produce the same digest, we call this a collision
- Every has function has collisions (Pigeon Hole Principle)
* Ideally, we'd like them (collisions) to be hard to find

- Ideal Properties of a Cryptographic Hash

1. Pre-Image Resistant

- For any possible digest y, it should be hard to find an input x such that $h(x)=y$ (Hard to invert $h(x))$

2. Weak-Collision Resistant

- For any input m, it should be hard to find another input n such that $h(m)=$ $h(n)$

3. Strong-Collision Resistant

- It should be hard to find any two inputs m and n such that $h(m)=h(n)$

- Discrete Log Hash Function

- Pick two primes p and q where $q=2 p+1$
- Inputs are numbers between 1 and $p^{2}-1$
* Take the input x and write it in "base p"

$$
\cdot x=a_{0}+a_{1} p \text { where } 0<=a_{0}<=p-1 \text { and } 0<=a_{1}<=p-1
$$

- Pick two different primitive roots α and $\beta(\bmod p)$
* $h(x)=h\left(a_{0}+a_{1} p\right)=\alpha^{a_{0}} \beta^{a_{1}}$
$-h(x)$ takes input of size about p^{2} and produces output of size about $q \approx \sqrt{p^{2}}=p$
- About p^{2} numbers are getting mapped to one of $2 p+1$ outputs so there are lots of collisions
- Nevertheless, finding a collision is hard in the sense that producing a single collision is as hard as solving the discrete \log problem $\alpha=\beta^{c}(\bmod q)$

- Why is this?

- Suppose you find a collision to this discrete log hash. You find $h(x)=h(y)$
* $x=a_{0}+a_{1} p$ base p
* $x=b_{0}+b_{1} p$ base p
* $h(x)=\alpha^{a_{0}} \beta^{a_{1}} \equiv \alpha^{b_{0}} \beta b_{1}(\bmod q)$
- This means
* $\alpha^{a_{0}-b_{0}} \beta^{a_{1}-b_{1}} \equiv 1(\bmod q)$
- Plug in $\alpha \equiv \beta^{c}(\bmod q)$
* $\left(\beta^{c}\right)^{a_{0}-b_{0}} \beta^{a_{1}-b_{1}} \equiv 1(\bmod q)$
- This means
* $\beta^{c\left(a_{0}-b_{0}\right)+a_{1}-b_{1}} \equiv(\bmod q)$
- Because β is a primitive root, the only way this can happen is if $c\left(a_{0}-b_{0}\right)+a_{1}-b_{1}$ is a multiple of $q-1$
- This means
* $c\left(a_{0}-b_{0}\right)+a_{1}-b_{1} \equiv 0(\bmod q-1)$
- Found c such that $\alpha \equiv \beta^{c}(\bmod q)$
- This means the discrete \log hash has strong collision resistance

- Disadvantages of Discrete Log Hash

- Can't deal with arbitrarily long inputs
- Slow compared to other hashes
* SHA-1 or SHA-2 is used much more instead

- Bad Example of a Cryptographical Hash Function

- Fix a large number n
$-h(x)=x(\bmod n)$
- This is not pre-image resistant or weak collision resistant. Easy to find lots of collisions

- Birthday Paradox

- How many people do you need in a room before it is likely that two people share a birthday?
- How many people do we need before the probability is greater than 50%
- Suprisingly, the answer is only 23 people
- 365 days and k people, the probability that no two people share a birthday is $1\left(\frac{364}{365}\right)\left(\frac{363}{365}\right)\left(\frac{362}{365}\right) \ldots\left(\frac{366-k}{365}\right) \approx e^{\frac{-k^{2}}{365}}$
- In general, if we have N randomly chosen objects chosen with replacement k times, the probability that no two objects are chosen twice is approximately $e^{\frac{-k^{2}}{N}}$
- IMPORTANT: if $k>\sqrt{N}$, this problem is quickly going to 0

- Message "Signing"

- One way to "sign" a message m would be to put a signature after the message which is $h(m)$ for some hash function
- Now you send the message $(m, h(m))$
- Bob can check if a message is valid by computing $h(m)$ for the message he receives and seeing if it matches the signature
- This protects against accidental mistakes, but if Eve is maliciously changing the message, she could change the has too
- Signature has nothing to do with Alice
- Goal: Use public key cryptography to create a signature that only Alice could have produces but that anyone can check is from Alice.

