4/23/18 Class Notes

Manish Joshi

May 7, 2018

This is a test.

1 Discrete Logarithm Problem

Suppose $\alpha=\beta^{x}(\bmod \mathrm{p})$
If you know $\beta, \mathbf{x}, \mathbf{p}$,then computing α is easy with modular exponentiation.
Now, Suppose you know $\alpha, \beta, \mathrm{p}$ and want to find x . How would you do it?

$$
a=b^{x}
$$

$\ln (a)=x \ln (b)$
$x=\frac{\ln (a)}{\ln (b)}$
But, in modular arithmetic there is no analog of the $l n$ function, so this this method does not work. No one knows a fast way to do it.

Naive way: Brute Force: try all possible values for x until you find the one that works. This has a running time of $\mathrm{O}(\mathrm{p})$.

1.1 Diffie-Hellman Key exchange

Diffie- Hellman key exchange is an application of the discrete log problem which allows Alice and Bob to agree on a key securely over the internet, but they cannot use it to send messages.

Steps for Diffie-Helman

- Alice picks a large prime number, p (200 digits) and a primitive root $\beta(\bmod \mathrm{p})$
* Note: Primitive root powers produce every residue (mod p).

Everybody knows p and β
Alice picks a secret number a, $2 \leq \mathrm{a}<\mathrm{p}-1$
Bob picks a secret number $\mathrm{b}, 2 \leq \mathrm{a}<\mathrm{p}-1$

Alice computes $\beta^{a}(\bmod \mathrm{p})=\mathrm{A}$ and sends it to Bob
Bob computes $\beta^{b}(\bmod \mathrm{p})=\mathrm{B}$ and sends it to Alice

Alice computes $\mathrm{K} \equiv \beta^{a b} \equiv B^{a}(\bmod \mathrm{p})$
Bob computes $\mathrm{K} \equiv \beta^{a b} \equiv A^{b}(\bmod \mathrm{p})$
They use the first 128 bits as the key for AES or other encryption system.

Why is this secure?
Eve knows p, β, A and B . She doesn't know a and b , and finding them requires solving the discrete \log problem.

