04/02/2018 Notes

Pushkar R. Tiwari

April 17, 2018

3DES(triple encrytion): It is secure against a meet in the middle attack.
$3 \mathrm{DES}(\mathrm{P})=\mathrm{E}_{3}\left(E_{2}\left(E_{1}(P)\right)\right)=C$
$E_{K 2}\left(E_{K 1}(P)\right)=D_{K 3}(C)$
2^{112} entries $E_{K 1}(P)=D_{K 2}\left(D_{K 3}(C)\right)$
112 bits of effective security.
3DES uses 2 keys $\left(\mathrm{K}_{1}, K_{2}\right)$
$3 \mathrm{DES}(\mathrm{P})=\mathrm{E}_{K 1}\left(E_{K 2}\left(E_{K 1}(P)\right)\right)=C$
Try to do a meet in the middle attack
$\mathrm{D}_{K 2}\left(E_{K 1}(P)\right)=D_{K 1}(C) \ldots . .1$
$\mathrm{E}_{K 1}(P)=E_{K 2}\left(D_{K 1}(C)\right) \ldots . .2$
Either case has two keys on one side of equation.

3DES is still used in practice today but recommended against.
Modes of Operation:
\rightarrow How to encrypt things larger than block size.
Electronic Codebook (ECB)
\rightarrow Break the message into blocks, encrypt each block seperately to get the ciphertext.

Cipher block chaining (CBC)
\rightarrow Start with some C_{0} (this is a random strig) can be sent in clear text.
Break plaintext into blocks $P_{1}, P_{2} \ldots \ldots . P_{k}$
\rightarrow Ciphertext $C_{i}=\mathrm{E}_{k}\left(P_{i} \oplus \mathrm{C}_{i-1}\right)$ (Even if all of the blocks P_{i} are the same, the ciphertext C_{i} will all be different)

To decrypt cipher block C_{i}
$\rightarrow \mathrm{i}=\mathrm{D}_{k}\left(C_{i}\right) \oplus \mathrm{C}_{i-1}$

Cipher-feedback(CFB)
\rightarrow define some notation
head $(P)=$ First n bits of the string $P($ DES- $n=8$, SDES $n=4)$
tail $(\mathrm{P})=$ everything after head
head $(101100101110)=1011$
tail(" 101100101110 ") $=00101110$
Write $\mathrm{A}|\mid \mathrm{B}$ means concatenate these strings together.
CFB
\rightarrow Fix an initial X_{1} (can be sent in cleartext)
$\mathrm{O}_{i}=\operatorname{head}\left(E_{k}\left(\mathrm{X}_{i}\right)\right) \rightarrow(8 \mathrm{bits})$
$C_{i}=O_{i} \oplus P_{i} \rightarrow(8$ bits $) \leftarrow$ Encryption is like the one time pad. DES is used as a random number generator.
$X_{i+1}=\operatorname{tail}\left(\mathrm{X}_{i}\right) \| C_{i} \rightarrow(64 \mathrm{bit})$
In this case our plaintext is broken into smaller blocks (8 bits for DES, 4 bits for SDES)

Output-feedback (Doesn't have problems of error propogation)
\rightarrow Same idea as CFB
$\mathrm{O}_{i}=\operatorname{head}\left(E_{k}\left(X_{i}\right)\right)$
$C_{i}=P_{i} \oplus O_{i}$
$\mathrm{X}_{i+1}=\operatorname{tail}\left(X_{i}\right) \| O_{i}$
Sometimes, thisiscalledastreamcipher.
The $\mathrm{O}_{i_{s}^{\prime}}$ can be precomputed(Don't depend on ciphertext.)
OFB is much faster as a result(at the cost of some security.)
Counter (CTR)
\rightarrow Start with any X_{0} (can be sent cleartext)
$X_{i}=X_{i-1}+1\left(\bmod 2^{b}\right): b \rightarrow$ blocksize
$C_{i}=P \oplus E_{k}\left(\mathrm{X}_{i}\right)$
Take home message : ECB \rightarrow is usually not a good choice for encryption. Pick a different mode of operation.

AES(Advanced Encryption Standard)

\rightarrow NIST put out a call for proposals to replace DES in the 90s.
The system chosen was rijndael.
This was established as the new standard for data encryption.
Not a feistel cipher
\rightarrow Unlike DES the design of AES is completely open to make sure there are no hidden back door.

We'll describe SAES (Simplified AES)
$\rightarrow 2$ rounds(+ initial add round key)

Diagram for SAES

Ciphertext

Plaintext and master key are 16 bits in SAES.
Only 1 sbox and it is created using a known formula (takes in 4 bits and output 4 bits)
Take in 4 bits. use them to write a polynomial in F_{16} $F(x)=\mathrm{b}_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}$ Work (modulo $X^{4}+\mathrm{X}+1$)
\rightarrow First we find the inverse of this polynomial in F_{16} $\left(\mathrm{b}_{0} X^{3}+b_{1} X^{2}+b_{2} X+b_{3}\right)^{-1}=\mathrm{C}_{0} X^{3}+C_{1} X^{2}+C_{2} X+C_{3}$ write these 4 -bit as a vector

$$
\left(\begin{array}{c}
\mathrm{C}_{0} \\
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)^{4-1}
$$

Multiply on the left by a matrix and add another vector.

$$
\left(\begin{array}{l}
1011 \\
1101 \\
1110 \\
0111
\end{array}\right)\left(\begin{array}{l}
\mathrm{C}_{0} \\
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
\mathrm{d}_{1} \\
d_{2} \\
d_{3} \\
d_{4}
\end{array}\right)
$$

