04/02/2018 Notes

Pushkar R. Tiwari

April 17, 2018

3DES(triple encrytion): It is secure against a meet in the middle attack. 3DES(P)=E₃($E_2(E_1(P))$) = C $E_{K_2}(E_{K_1}(P)) = D_{K_3}(C)$ 2¹¹² entries $E_{K_1}(P) = D_{K_2}(D_{K_3}(C))$ 112 bits of effective security. 3DES uses 2 keys(K₁, K₂) 3DES(P)=E_{K1}($E_{K_2}(E_{K_1}(P))$) = C Try to do a meet in the middle attack $D_{K_2}(E_{K_1}(P)) = D_{K_1}(C)....1$ $E_{K_1}(P) = E_{K_2}(D_{K_1}(C))....2$ Either case has two keys on one side of equation.

3DES is still used in practice today but recommended against.

Modes of Operation: \rightarrow How to encrypt things larger than block size.

Electronic Codebook (ECB) \rightarrow Break the message into blocks, encrypt each block seperately to get the ciphertext.

Cipher block chaining (CBC) \rightarrow Start with some C_0 (this is a random strig) can be sent in clear text. Break plaintext into blocks P_1, P_2, \dots, P_k

 \rightarrow Ciphertext $C_i = E_k(P_i \oplus C_{i-1})$ (Even if all of the blocks P_i are the same, the ciphertext C_i will all be different)

To decrypt cipher block C_i $\rightarrow i=D_k(C_i)\oplus C_{i-1}$ $\begin{array}{l} \text{Cipher-feedback}(\text{CFB}) \\ \rightarrow \text{define some notation} \\ \text{head}(\text{P}) = \text{First n bits of the string P}(\text{DES-n}{=}8 \text{, SDES n}{=}4) \\ \text{tail}(\text{P}) = \text{everything after head} \\ \text{head}(101100101110) {=}1011 \\ \text{tail}("101100101110") {=}00101110 \\ \text{Write A} || \text{B means concatenate these strings together.} \\ \text{CFB} \\ \rightarrow \text{Fix an initial } X_1(\text{can be sent in cleartext}) \\ \text{O}_i = head(E_k(\mathbf{X}_i)) {\rightarrow} (8 \text{ bits}) \\ C_i {=} O_i {\oplus} P_i {\rightarrow} (8 \text{ bits}) \leftarrow \text{Encryption is like the one time pad.} \text{ DES is used as a random number generator.} \\ X_{i+1} {=} \text{tail}(\mathbf{X}_i) || C_i {\rightarrow} (64 \text{ bit}) \\ \text{In this case our plaintext is broken into smaller blocks (8 bits for DES, 4 bits for SDES)} \end{array}$

Output-feedback (Doesn't have problems of error propogation) \rightarrow Same idea as CFB $O_i = head(E_k(X_i))$ $C_i = P_i \oplus O_i$ $X_{i+1} = tail(X_i)||O_i$ Sometimes, this is called a stream cipher. The $O_{i'_s}$ can be precomputed (Don't depend on ciphertext.) OFB is much faster as a result (at the cost of some security.)

Counter (CTR) \rightarrow Start with any X_0 (can be sent cleartext) $X_i = X_{i-1} + 1 \pmod{2^b} : b \rightarrow \text{blocksize}$ $C_i = P \oplus E_k(X_i)$ Take home message : ECB \rightarrow is usually not a good choice for encryption. Pick a different mode of operation.

AES(Advanced Encryption Standard) $\rightarrow NIST put out a call for proposals to replace DES in the 90s.$ The system chosen was rijndael. This was established as the new standard for data encryption.

Not a feistel cipher \rightarrow Unlike DES the design of AES is completely open to make sure there are no hidden back door.

We'll describe SAES (Simplified AES) $\rightarrow 2$ rounds(+ initial add round key)

Diagram for SAES

 \downarrow

1.	Substitude
2.	Shift rows
3.	Add round key 2

 \downarrow

Ciphertext

 $\begin{array}{c} \mbox{Plaintext and master key are 16 bits in SAES.} \\ \mbox{Only 1 sbox and it is created using a known formula (takes in 4 bits and output 4 bits) } \\ \mbox{Take in 4 bits. use them to write a polynomial in F_{16}} \\ F(x) = b_0 X^3 + b_1 X^2 + b_2 X + b_3 \\ \mbox{Work (modulo } X^4 + X + 1) \\ \rightarrow \mbox{First we find the inverse of this polynomial in F_{16}} \\ (b_0 X^3 + b_1 X^2 + b_2 X + b_3)^{-1} = C_0 X^3 + C_1 X^2 + C_2 X + C_3 \\ \mbox{write these 4-bit as a vector} \\ \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \\ C_3 \end{array} \right) \end{array} \right)$

Multiply on the left by a matrix and add another vector.

$$\begin{pmatrix} 1011\\1101\\1110\\0111 \end{pmatrix} \begin{pmatrix} C_0\\C_1\\C_2\\C_3 \end{pmatrix} + \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} = \begin{pmatrix} d_1\\d_2\\d_3\\d_4 \end{pmatrix}$$