MATH 314 Spring 2018 - Class Notes

04/19/2018
Aabha Ghimire
Summary: In Today's Class we studied into further details about the Miller Rabin Primality Test, the Factoring Trick, Dixon's Factoring Algorithm, and the examples of how each of them are implemented.

Notes: What is the best way to factor a very large number $n=p q$?
The first attack with just pen and paper would be trail division. We have to divide n by numbers until we find a factor.
For example divide by $2,3,5,7,11,13$ and might even have to go upto the square root. Which will take $O(\sqrt{n})$.

If n is an RSA modulus then,

$$
\begin{gathered}
n \approx 10^{240} \\
\sqrt{n} \approx 10^{120}
\end{gathered}
$$

The second way is The Factoring Trick. If $x^{2} \equiv y^{2}$ and $x \not \equiv \pm y$ then n is composite and $d=\operatorname{gcd}(x-y, n)$ always going to be a non-trivial factor of n .

First attempt at Factoring Trick:

- Pick a randomly with $\sqrt{n}<a<n$
- Lets Compare $c=a^{2} \% n\left(a^{2}\right)$-is random
- If $C=x^{2}$ (already a square)for some integer x
- Then we have $a^{2} \equiv x^{2}$
- We win!!!

Pick numbers/square/reducing mod $n /$ end on a square//
How many steps do we expect this to take? a's are random so the $c=a^{2} \% n$ is essentially a residue mod n.

What is the probability that a random number less than n is a square?
numberofsquarelessthan(n)/n

$$
=\sqrt{n} / n
$$

This probability is $\sqrt{n} / n=1 / \sqrt{n}$

On average we have to do this \sqrt{n} many times. So, this algorithm has running time $O(\sqrt{n})$

Dixon's Factoring Algorithm

Idea: Pick numbers a and computer $c=a^{2} \% n$, keep them if C does not have any big prime factors.
Fix a bound B, prime number are considered "big" if they are bigger than B. We create a matrix F that has one column for every prime number, less than B .

- Steps:

1. Pick a random $a \sqrt{n}<a<n$
2. Compute $c=a^{2} \% n$
3. Trail division
4. If we have not completely factored C. We give up and go back to step 1.
5. If C is completely factored into primes up to B add a row to F where the entry in each column is the number of times that prime divides C .
6. Repeat steps 1-5 until F has more rows than columns.

Linear Algebra Fact:Any matrix that has more rows than columns has linear dependence.
We find a linear combination of rows that we can add together to get a row where all the entries are even. Suppose we add together the rows corresponding to a1,a2.. ak.

$$
c 1=a 1^{2} \% n, c 2=a 2 \% n
$$

This means that the prime factors of $\mathrm{y}=\mathrm{c} 1 \mathrm{c} 2 \ldots \mathrm{ck}$.(All the Cs multiplied together).
All the prime numbers in Y appear to be an even power.

$$
\begin{gathered}
\text { so, } \mathrm{Y} \text { is a square 1. } Y=y^{2} y=\left(a 1^{2}\right)\left(a 2^{2}\right)\left(a k^{2}\right) \% n \\
\text { Let } x=a 1 a 2 . . a k \\
\text { Then } x^{2} \equiv y^{2}(\bmod n)
\end{gathered}
$$

