MATH 314 Spring 2018 - Class Notes

4/18/2018
Scribe: Alex Jackson
Summary: This day we talked about different methods to find the factors of a number

- Factoring Trick
- Dixon's Factoring Algorithm

Notes: How can we factor large numbers?

1. First method is trail division try division by $2,3,5,7, \ldots, \sqrt{(} n)$ has time of $O(\sqrt{(} n))$
2. The Second is Factoring Trick

Theorem: If $x^{2} \equiv y^{2}(\bmod () n)$ and $x \equiv \pm y(\bmod n)$

- then " n " is a composite number and the of $g d c(n, x-y)=d$, the " d " is non-trivial factor of "n"
- non-trivial means it is not 1 or itself

First attempt to use Factoring Trick

1. Pick random values of "a" and compute $a^{2}(\bmod () n)$
2. If $a^{2} \% n=y^{2}$ for some " y " then we factor " n "

- This takes between 1 to n tries before getting the right " y "
- The probability of " a " is a square factor is

$$
\frac{1}{\sqrt{(} n)}
$$

- Has a time of $O(\sqrt{(} n))$

Def: Dixon's Factoring Algorithm

- The idea is to factor some "n"
- The Goal is to find number "a" where $a^{2} \%(n)$ doesn't have any Prime factors
- With a fixed bound "B" that is the limit of how Big the Prime factor we'll consider for our $a^{2} \% n$
- With those "a" create a Matrix F
- Having a column for every prime numbers less than "B"

Steps to Dixon's Factoring Algorithm

1. Pick "a" randomly where $\sqrt{(} n)<a<n-1$
2. Compute $C=a^{2} \%$ n Do trail division on "C" with Prime numbers up to "B"
3. If we haven't completely factored " C ", go back to step 1
4. If "C" is fully factored into primes less than "B"

- Add "a" row to Matrix F
- Where the entries in each column are the number of times that each primes divided "C"

5. Repeat Steps 1-4 until F has more rows than columns

Recall: Any Matrix with more rows than columns has "linear dependence" among the rows linear dependence- has some way to add/subtract Rows to get a all 0 matrix
Note: We find "linear dependence" among Rows of $F \bmod (2)$ (working with \mathbb{F}_{2})
6. Suppose that the Rows corresponding to $a_{1}, a_{2}, \ldots, a_{k}$ are involved in this linear dependence $a_{1}^{2} \% n=C_{1}, a_{2}^{2} \% n=C_{2}, a_{3}^{2} \% n=C_{3}$
7. Now multiplying $C_{1}, C_{2}, \ldots, C_{k}=Y$ gives a number where all prime factors appear to an even power, so $\left.Y=y^{2}(Y=\sqrt{(} y)\right)$
8. let $x=a_{1}, a_{2}, \ldots, a_{k}$
9. Find out if $x^{2} \equiv\left(y^{2} \bmod (n)\right)$ but $x \neq y(\bmod n)$ if it does then
10. now you can find the factors by getting the gcd of $(X-Y, N)$

EX: use Dixon's to factor $\mathrm{n}=629$ with a bound of 12 , try different a's then factor them $\begin{array}{lllll}2 & 3 & 5 & 7 & 11\end{array}$
$a=73$
$a=59$
$a=62$
$a=80$
$a=87$
$a=94$$\left(\begin{array}{lllll}0 & 3 & 0 & 0 & 1 \\ 4 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0\end{array}\right)$

- So in order to find the square we need to add rows together to get a square
- If you add rows 73, 80, 94 you get $\left.\begin{array}{l}a=73 \\ \begin{array}{l}a=80 \\ a=94 \\ \text { AddingRows }\end{array} \\ \\ \end{array} \begin{array}{rllll}2 & 3 & 5 & 7 & 11 \\ 0 & 3 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 2 & 4 & 2 & 0 & 2\end{array}\right)$
- With this you can get the factors of 629 by find y, Y, x, X
- $Y=73^{2} \% 629 * 80^{2} \% 629 * 94^{2} \% 629=118(\bmod 629)$
- $y=\sqrt{Y}=\lceil y\rceil=11$
- $x=(73 * 80 * 94) \%(629)=472$
- $X=x^{2} \equiv 118(\bmod 629)$
- as you can see $x \neq y$ but $X \equiv Y(\bmod 629)$ so we can get one of the factors of 629 by the $\operatorname{gcd}(x-y, n)=\operatorname{gcd}(472-11,629)=1$

