MATH 314 Class Notes for 4/16/2018

Scribe: Daniel Pereira

Summary: We discussed a few strategies/tests to determine whether a large number is "composite" or "probably prime" in order to use them for RSA.

Notes:

-How do we find prime numbers p,q for RSA?
-Generally, it is good practice to pick p,q to have around 120 digits.
-How many prime numbers are there to choose from?
$-\pi(x)=$ number of prime numbers less than or equal to x
Examples: $\pi(10)=(2,3,5,7)=4$
$\pi(11)=(2,3,5,7,11)=5=\pi(12)$
-Prime Number Theorem: $\pi(x)=\frac{x}{\ln (x)}$
-The number of prime numbers with 120 digits is:

$$
\pi\left(10^{121}\right)-\pi\left(10^{120}\right) \approx \frac{10^{121}}{\ln \left(10^{121}\right)}-\frac{10^{120}}{\ln \left(10^{120}\right)}=\frac{10^{121}}{121 \ln (10)}-\frac{10^{120}}{120 \ln (10)}
$$

-About 1 in every $121 \ln (10) \approx 240$ numbers are prime.

Strategy to find prime numbers for RSA:

-Pick a random number with about 120 digits.
-Call this number i
-Check if i is prime.
-If it is, use it. Otherwise, repeat and try again.
-On average, this requires about 120 times/trials.
-Generally, we don't want p,q to be consecutive prime numbers.
-How do we check if i is prime?
-One option is to try dividing i by all of the numbers (odd), up to \sqrt{i}
-If i has 120 digits, \sqrt{i} has 60 digits.
-Doing 10^{60} operations isn't possible, so this method isn't very useful.
-Recall: Fermat's Primality Test, and also recall that if p is prime, then $a^{p-1} \equiv 1 \quad(\bmod p)$

Steps to Fermat's Primality Test for n:
Repeat the following 3 steps k times:

1) Pick a random a where $2 \leq a<n-1$
2) Compute $a^{n-1} \quad(\bmod n)$
3) If this is not 1 , then return "composite". But if we get 1 every time, then return "probably prime".
-If $a^{n-1} \equiv 1(\bmod n)$, but n is not prime, then n is called a (base a) pseudoprime.
-If n is composite and $a^{n-1} \not \equiv 1(\bmod n)$, then a is called a witness of the compositeness of n.
-Carmichael numbers are pseudoprimes to every base, or composite numbers with no witness.
-Smallest example of a Carmichael number is 341
-We need p,q to be prime numbers, so Carmichael numbers aren't very useful.
Solovay-Strassen Primality Test:
-Recall: If p is prime, then the Jacobi symbol, $\left(\frac{a}{p}\right)=1$ if $a \equiv x^{2}(\bmod p)$, or $\left(\frac{a}{p}\right)=-1$ if $a \not \equiv x^{2} \quad(\bmod p)$
-If p is not prime, then the Jacobi symbol doesn't tell us if a is a square or not.
-Theorem: If p is prime, then for any a , we have the equation: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}$ $(\bmod p)$
-Note that this equation is only valid if p is a prime number.
Steps for the Solovay-Strassen Primality Test for n :
Repeat the following 3 steps k times:
4) Pick a random a where $2 \leq a<n-1$.
5) Compute $\left(\frac{a}{n}\right)$ and $a^{\frac{n-1}{2}}(\bmod n)$
6) If $\left(\frac{a}{n}\right) \neq a^{\frac{n-1}{2}}(\bmod n)$, then return "composite". But if $\left(\frac{a}{n}\right)=a^{\frac{n-1}{2}}$ $(\bmod n)$, every time, then return "probably prime".
-If $\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}}(\bmod n)$, but n is composite, then n is called a (base a) Euler pseudoprime.
-For any composite n, at least half of the possible a's are witnesses.
-If we repeat the Solovay-Strassen Test k times, and we got "probably prime" each of those times, then the probability that n is composite is at most $\frac{1}{2^{k}}$
-Refer to the Solovay-Strassen SAGE file in the Handouts section of CoCalc.
-Steps for the Miller-Rabin Primality Test (Improved Fermat Primality Test):

Repeat the following 3 steps k times:

1) Check if n is prime.
2) Pick a random a where $2 \leq a<n-1$.
3) Compute $a^{n-1}(\bmod n)$
-We break down the last step into the following 3 steps:
4) Write $n-1=m * 2^{k}$, where m is odd.
-Example: For $n=21$, we have that $n-1=20=5 * 2^{2}$, where $m=5$ and $k=2$, where k is the exponent 2 .
5) Compute $b_{0} \equiv a^{m}(\bmod n)$. If $b_{0} \equiv \pm 1(\bmod n)$, return "probably prime".
6) For i in $1,2, \ldots, \mathrm{k}-1$, compute $b_{i} \equiv b_{i-1}^{2}(\bmod n)$. If $b_{i} \equiv 1(\bmod n)$, return "composite", but if $b_{i} \equiv-1(\bmod n)$, return "probably prime". If the for loop finishes, and $b_{k-1} \not \equiv \pm 1(\bmod n)$, return "composite".
-Note: Essentially, what we are computing in the Solovay-Strassen Test is $b_{k-1} \equiv a^{\frac{n-1}{2}} \quad(\bmod n)$.
-If n is composite, then at least $3 / 4$ of the possibilities for a are witnesses for the Miller-Rabin Test.
-If we repeat the Miller-Rabin Test k times and we get "probably prime" each time, the probability that n is composite is at most $\left(\frac{1}{4}\right)^{k}$.
-There exists a test called the AKS Primality Test that can check for certain if a number is prime, in polynomial time. However, it is too slow for practical applications.
