RSA Notes

Henry Osei

April 12, 2018

RSA: Public Key cryptographic system inverted by Rivest Shamir and Adlemann.

Trapdoor Function: Multiplying numbers (easy) but factoring them hard.
Finding Prime numbers p and q and multiplying them takes logarithmic time but the fastest ways known to factor $q \times p=n$ into p and q require (almost) exponential time.

Steps of RSA:

1) Alice picks two large prime numbers (p and q) randomly multiplies them together $n=p \times q$.
2)Pick exponent e (often 65537) such that

$$
\operatorname{gcd}(e,(p-1)(q-1))=1 .
$$

These two numbers (n, e) are Alice's public Key.
Bob wants to send Alice a message he encodes it as a number.
He computes

$$
C=m^{e} \equiv \quad(\bmod n)
$$

He sends C to Alice.

How does Alice decrypt C ? Recall the basic principle of modular exponentation.

$$
X^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

So Alice wants a number d such that

$$
d e \equiv 1 \quad(\bmod \varphi(n))
$$

this means $d e=1+k(\varphi(n))$
Then Alice Computes

$$
C^{d} \equiv\left(m^{e}\right)^{d} \equiv m^{e d} \equiv m^{1+k \varphi(n)} \equiv m^{1}\left(m^{\varphi(n)}\right)^{k} \equiv m \quad(\bmod n)
$$

How does Alice find d ?

$$
d=e^{-1} \quad(\bmod \varphi(n))
$$

what is $\varphi(n)$?

$$
\varphi(n)=\varphi(p \times q)=p \times q(1-1 / p)(1-1 / q)=(p-1)(q-1)
$$

Alice uses Euclid's Algorithm to find

$$
d=e^{-1} \quad(\bmod \varphi(n))
$$

If Eve wants to decrypt c she needs to know d, but this means finding the inverse of $e \bmod \varphi(n)$ which requires factoring n which is hard (we think).

Ex: Suppose Alice picks

$$
\begin{gathered}
p=5 \\
q=11 \\
n=p * q=(5 * 11)=55 \\
e=7
\end{gathered}
$$

check $\operatorname{gcd}(7,(5-1)(11-1))=1$
She computes

$$
\begin{gathered}
d=7^{-1} \quad(\bmod \varphi(55)) \\
d=7^{-1} \quad(\bmod 40)
\end{gathered}
$$

Euclids Algorithm:

$$
\begin{gathered}
40=5(7)+5 \\
7=1(5)+2 \\
5=2(2)+1
\end{gathered}
$$

$$
\begin{gathered}
1=5-2(2) \\
=5-2(7-1(5)) \\
=-2(7)+3(5) \\
=2(7)+3(40-5(7)) \\
1=3(40)-17(7)
\end{gathered}
$$

$$
d=-1 \equiv 23 \quad(\bmod 40)
$$

d is Alice's Private Key: Suppose Bob wants to send Alice the message

$$
m=2
$$

Bob Computes:

$$
\begin{gathered}
C=2^{7} \quad(\bmod 55) \\
7=4+2+1 \\
2^{1} \equiv 2 \quad(\bmod 55) \\
2^{2} \equiv 4 \quad(\bmod 55) \\
2^{4} \equiv 16 \quad(\bmod 55)
\end{gathered}
$$

So

$$
\begin{aligned}
C= & 2^{7}=2^{1} * 2^{2} * 2^{4} \quad(\bmod 55) \\
& =2 * 4 * 16 \quad(\bmod 55) \\
& =2 * 9 \equiv 18 \quad(\bmod 55)
\end{aligned}
$$

Bob sends 18 to Alice

Alice wants to decrypt this she computes

$$
\begin{gathered}
18^{23} \quad(\bmod 55) \\
23=16+4+2+1 \\
18^{1}=18 \quad(\bmod 55) \\
18^{2}=49 \quad(\bmod 55) \\
18^{3}=36 \quad(\bmod 55) \\
18^{4}=31 \quad(\bmod 55) \\
18^{8}=26 \quad(\bmod 55) \\
18^{16}=26 \quad(\bmod 55) \\
18^{23}=18^{1} * 18^{2} * 18^{4} * 18^{16} \quad(\bmod 55) \\
=18 * 49 * 36 * 26 \quad(\bmod 55) \\
=2 \quad(\bmod 55)
\end{gathered}
$$

Suppose someone discovers a way to find the decryption exponent without factoring n.

Magic box that tells you d knowing (n, e)
You can compute

$$
\begin{aligned}
& e d=1+K \varphi(n) \\
& e d-1=K \varphi(n)
\end{aligned}
$$

Try different values of K to find $\varphi(n)$
Knowing d allows you to find $\varphi(n)$.

Note that

$$
\begin{gathered}
\varphi(n)=(p-1)(q-1) \\
=p q-p-q+1
\end{gathered}
$$

This means that

$$
n-\varphi(n)+1=p+q
$$

