MATH 314 Spring 2018 - Class Notes

3/7/18
Scribe: Ethan Allen
Summary: This lesson began by briefly summarizing the history of the Data Encryption Standard (DES). We then went over a simplified version of DES and went through an example of it in action.

Feistel Cipher Consists of multiple rounds
Encryption:

$$
\begin{gathered}
\boxed{\mathrm{L}_{i+1}}=R_{i} \\
\boxed{\mathrm{R}_{i+1}}=f\left(R_{i}, k_{i}\right) \oplus L_{i}
\end{gathered}
$$

Decryption:

$$
\begin{gathered}
\boxed{\mathrm{R}_{i}}=L_{i+1} \\
\underline{\mathrm{~L}_{i}}=f\left(L_{+1 i}, k_{i}\right) \oplus R_{i}
\end{gathered}
$$

Data Encryption Standard (DES)

- In 1972, NBS (existing today as NIST) put out a call for proposals for a national cryptosystem.
- IBM submitted a system called LUCIFER that they had developed
- NSA made some changes to LUCIFER but didn't explain why they made these changes
- This system was then adopted by MBS as the data encryption standard
- DES is a Feistel system using 16 rounds and 64 -bit strings of plaintext
- We will talk about SDES (Simplified DES)

SDES Has 3 rounds with 16-bit messages

- Each round uses a Different Round Key
- Master key is 9-bits long-referred to as " k "
- Round key for round " i " is the 8 -bits starting at bit " i " in k (and wrapping around if necessary)

ABOVE: F-function for SDES

SDES Example

Master Key: 111010110
Plaintext: 101101110101
$\mathrm{K} 1=11100011$
$\mathrm{K} 2=11010110$
$\mathrm{K} 1=10101101$

(1).jpg

Round 2

F-function for round 2 000011 Expander
00000011

(4).jpg Round 3

Final Ciphertext: 001100100011
To Decrypt: Swap left and right halves, then perform same steps as encryption but with reversed round key order: k3 then k2 then k1

