# MATH 314 Spring 2018 - Class Notes 

3/6/2018
Scribe: Scott Swatling
Summary: We finished Jacobi symbols by doing an example, learned how to conduct a Fermat Primality Test, and started covering Modern Cryptography and the Feistal Cipher.

## Notes:

Jacobi symbols example: Is 1001 a square (mod 9907)
$\left(\frac{1001}{9907}\right)$
Rule 4:
$\left(\frac{9907}{1001}\right)$
Rule 1:
$\left(\frac{898}{1001}\right)$
Rule 3:
$\left(\frac{2}{1001}\right)\left(\frac{449}{1001}\right)$
Rule 5:
(1) $\left(\frac{449}{1001}\right)$
$\left(\frac{449}{1001}\right)$
Rule 4:
$\left(\frac{1001}{449}\right)$
Rule 1:
$\left(\frac{103}{449}\right)$
Rule 4:
$\left(\frac{449}{103}\right)$
Rule 1:
$\left(\frac{37}{103}\right)$
Rule 4:
$\left(\frac{103}{37}\right)$
Rule 1:
$\left(\frac{29}{37}\right)$
Rule 4:
$\left(\frac{37}{29}\right)$
Rule 1:
$\left(\frac{8}{29}\right)$
Rule 3 (done twice):
$\left(\frac{2}{29}\right)\left(\frac{2}{29}\right)\left(\frac{2}{29}\right)$
Rule 5:
$(-1)(-1)(-1)$
$(-1)$
1001 is not a square $(\bmod 9907)$

## Fermat Primality Test

- Tests whether a number is composite
- Lets assume that we have some large number, N , that we think might be prime Steps:

1. Pick some random integer $A$
2. Use A to calculate: $A^{N-1}(\bmod N)$

If N is a prime number then, $A^{N-1} \equiv 1(\bmod N)$, otherwise, N is composite.
Unfortunately, there are some "false Positives" when using this test.
There exists bases A , such that $A^{N-1} \equiv 1(\bmod N)$ even though N is composite.
In this case N is considered a Base-A pseudoprime.
To overcome these false positives, we simply redo the test with a different A value.

## Examples:

Is 15 a prime?
Lets have $A=4$
$4^{15-1}(\bmod 15)$
$4^{14}(\bmod 15)$
We can use Modular Exponentiation to solve this:
$14=8+4+2$
$4^{1}=4(\bmod 15)$
$4^{2}=1(\bmod 15)$
$4^{4}=4^{2^{2}}=1^{2}=1(\bmod 15)$
$4^{8}=4^{4^{2}}=1^{2}=1(\bmod 15)$
$4^{14}=4^{2} * 4^{4} * 4^{8}=1 * 1 * 1=1(\bmod 15)$
So we can concule that $15 \underline{\text { might }}$ be a prime
Lets try it again with another A value
This time let $a=2$
$2^{15-1}(\bmod 15)$
$2^{14}(\bmod 15)$
$14=8+4+2$
$2^{1}=2(\bmod 15)$
$2^{2}=4(\bmod 15)$
$2^{4}=2^{2^{2}}=4^{2}=1(\bmod 15)$
$2^{8}=2^{4^{2}}=1^{2}=1(\bmod 15)$
$2^{14}=2^{2} * 2^{4} * 2^{8}=4 * 1 * 1=4(\bmod 15)$
Because we did not get 1 when $A=2$, Fermats Primality Test says that 15 is a composite number

Unfortunetaly, there are composite numbers which are psuedoprime to every possible A value (341 is the smallest), These numbers are known as Carmicheal Numbers. There are infinitely many carmicheal numbers, but they are still rarer than primes.

## Modern Cryptography

With the advent of computers, there is no longer a need to use (mod 26) cryptosystems. Messages, images, video, and pretty much any form of data can be translated into binary in some way. As a result, almost anything can be encrypted using binary.

Lets say we have two bit strings A, and B, of the same length.
$A \oplus B$ is the bitwise sum of A and $\mathrm{B}(\bmod 2$ without carries $)$, also known as "XOR"
Example:
Let A be the bit string "0110101"
Let B be the bit string " 1110000 "
$A \oplus B=0110101 \oplus 1110000$
To calculate this we compare the two bit strings and follow this logic,

- if both bits are " 1 " or both bits are " 0 " the resulting bit is " 0 "
- Otherwise the resulting bit is " 1 "

So, In our example $0110101 \oplus 1110000=1000101$
$A \oplus A$ will always result in an all " 0 " string, so, $(B \oplus A) \oplus A=B$
This is the bit version of the one time pad
We can pick some key, K , that is a bit string the same length as our message, and use it to encode our message.

The encryption and decryption functions would be the exact same, that is to say,

- $\operatorname{Encrypt}_{k}(M)=M \oplus K$
- $\operatorname{Decrypt}_{k}(M)=M \oplus K$


## Feistal Cipher (Early 1970's)

Consists of multiple "rounds"
Inside of a round:

- Break the plaintext into two equal length bit strings Left $_{i}$ and Right $_{i}$
- Define Left $_{i+1}=$ Right $_{i}$
- Define $\operatorname{Right}_{i+1}=F\left(\right.$ Right $\left._{i}, K\right) \oplus$ Left $_{i}$, where $F($ Righti, ) can be any function Note: Some functions $F($ Righti, $K$ ) will be more secure than others

