MATH 314 - Spring 2018 - Class Notes Alexander Stoyanov
 03/27/2018

Recall SDES Feistel Cipher (3 rounds)

Round 1:	$L_1 = R_0$	$R_1 = L_0 \oplus f(R_0, K_1)$
Round 2:	$L_2 = R_1$	$R_2 = L_1 \oplus f(R_1, K_2)$
Round 3:	$L_3 = R_2$	$R_3 = L_2 \oplus f(R_2, K_3)$

Differential Cryptanalysis:

• Sort of like reverse engineering the system to recover the

Use Differential Cryptanalysis to attack SDES:

- Chosen Plaintext Attack
- Eve's goal is to recover K_3

Eve starts off with any plaintext L_0, R_0 . She encrypts this and gets L_3, R_3 . She knows $R_3 = L_2 \oplus f(R_2, K_3) = L_2 \oplus f(L_3, K_3) \rightarrow R_3 = (L_0 \oplus f(R_0, K_1)) \oplus f(L_3, K_3)$

Now Eve picks a new plaintext L_0^* and R_0^* where L_0^* can be anything (different from L_0). But $R_0^* = R_0$ (only change left half of the plaintext). She encrypts this plaintext and gets L_3^* , R_3^* .

$$\begin{array}{l} R_{3} = L_{0} \oplus f(R_{0},K_{1}) \oplus f(L_{3},K_{3}) \\ R_{3} \oplus R_{3}^{*} = (L_{0} \oplus L_{0}^{*}) \oplus f(L_{3},K_{3}) \oplus f(L_{3},K_{3}) \\ (R_{3} \oplus R_{3}^{*}) \oplus (L_{0} \oplus L_{0}^{*}) = f(L_{3},K_{3}) \oplus f(L_{3},K_{3}) \end{array}$$

$$\begin{array}{l} R_{3} = L_{0} \oplus f(R_{0},K_{1}) \oplus f(L_{3},K_{3}) \\ R_{3} \oplus R_{3}^{*} \oplus (L_{0} \oplus L_{0}^{*}) \oplus f(L_{3},K_{3}) \oplus f(L_{3},K_{3}) \\ \end{array}$$

F-function:

$$L_3 \rightarrow [Expander] \rightarrow [E(L_3) \oplus K_3] \rightarrow [S_1, S_2] \rightarrow [Output]$$

Eve doesn't know output but she does know

 $output \oplus output^* = (R_3 \oplus R_3^*) \oplus (L_0 \oplus L_0^*)$ She also doesn't know input, but $input \oplus input^* = E(L_3) \oplus E(L_3^*)$ Ex: Suppose Eve is performing differential cryptanalysis and she ends up finding that $L_3 = 101110, L_3^* = 000010$ She also computes that $(R_3 \oplus R_3^*) \oplus (L_0 \oplus L_0^*) = 100001$

 $\begin{array}{c} \text{(100001} = (output \oplus output^*))\\ [E(L_3) = 10111110] & \oplus & [E(L_3^*) = 00000010] = [10111100] \leftarrow input \oplus input^* \end{array}$

first 4 bits of $input \oplus input^* = 1011$ first 3 bits of $output \oplus output^* = 100$

Suppose $input = 0000 \rightarrow [S_1] \rightarrow 001 \leftarrow [output]$ $input^* = 1011 \rightarrow [S_1] \rightarrow 010 \leftarrow [output^*]$ $[output] \oplus [output^*] = 011 \leftarrow (wrong value, doesn't work)$

Let's try $input = 0001 \rightarrow [S_1] \rightarrow 010 \leftarrow [output]$ $input^* = 1010 \rightarrow [S_1] \rightarrow 110 \leftarrow [output^*]$ $[output] \oplus [output^*] = 100 \leftarrow (This is what we wanted)$

Repeat this for all 16 values of input, we find that only 0001 and 1010 are allowed.