MATH 314 Spring 2018 - Class Notes

03/26/2018

Scribe:Wei Zhang

Summary: Various ways of attacking SDES through Chosen Plaintext Attack.
Notes: Differential Cryptanalysis of SDES: is a sort of reverse engineering of the cryptosystem to try to recover the key.

1. Eve is trying to recover K_{3}-Picks L_{0} and R_{0} encrypts then gets L_{3} and R_{3}
2. Now she picks a new plaintext $L_{0}^{*}, R_{0}^{*}, L_{0}^{*}$ can be anything(different from L_{0}), $R_{0}^{*}=$ R_{0} (she picks the same right half as the first time)
3. $R_{3}=L_{2} \oplus f\left(R_{2}, K_{2}\right)$
4. $R_{3}=\left(L_{0} \oplus f\left(R_{0}, K_{1}\right)\right)+f\left(R_{2}, K_{3}\right)$
5. $R_{3}^{*}=\left(L_{0}^{*} \oplus f\left(R_{0}^{*}, K_{1}\right)\right) \oplus f\left(R_{2}^{*}, K_{3}\right)$
6. Add together:
(a) $R_{3} \oplus R_{3}^{*}=\left(L_{0} \oplus L_{0}^{*}\right) \oplus f\left(R_{2}, K_{3}\right) \oplus f\left(R_{2}^{*}, K_{3}\right)$
7. Eve knows everything is this equation except for K_{3}
8. $\left(R_{3} \oplus R_{3}^{*}\right) \oplus\left(L_{0} \oplus L_{0}^{*}\right)=f\left(L_{3}, K_{3}\right) \oplus f\left(L_{3}^{*}, K_{3}\right)$
9. Eve does not know what output or output* from number 8. However,Eve does know what output \oplus ouput * is because it is equal to $\left(R_{3}+R_{3}^{*}\right) \oplus\left(L_{0}+L_{0}^{*}\right)$
10. Input $=\mathrm{E}\left(L_{3}\right) \oplus K_{3}$
11. Input $^{*}=\mathrm{E}\left(L_{3}^{*}\right) \oplus K_{3}$
12. Input \oplus Input ${ }^{*}=\mathrm{E}\left(L_{3}\right) \oplus \mathrm{E}\left(L_{3}^{*}\right)+\left(K_{3} \oplus K_{3}\right)$
13. Input \oplus Input $^{*}=\mathrm{E}\left(L_{3}\right) \oplus \mathrm{E}\left(L_{3}^{*}\right)$
14. ($\left.K_{3} \oplus K_{3}\right)$ Goes away because of the 'xor' operator which cancels out the same value.
15. Eve knows Input \oplus Input* and Output \oplus Output*
16. Eve can try possible paris for Input \oplus Input* that sum to be the right value and see if they give the right Output \oplus Output*

Example:

Lets say:

- $L_{3}=101110$
- $\left(L_{3}^{*}\right)=000010$
- $\left(R_{3} \oplus R_{3}\right) \oplus\left(L_{0} \oplus L_{0}^{*}\right)=100001\left(\right.$ Output \oplus Output $\left.^{*}\right)$
- $\mathrm{E}\left(L_{3}\right)=1011110$
- $\mathrm{E}\left(L_{3}^{*}\right)=00000010$
- $\mathrm{E}\left(L_{3}\right) \oplus \mathrm{E}\left(L_{3}^{*}\right)=101111000\left(\right.$ Input \oplus Input $\left.{ }^{*}\right)$

Try input $=0000$

Then input $^{*}=1011$

- $001 \oplus 010=010!=100$

Try input $=0001$
Then input $^{*}=1010$

- $010 \oplus 110=100=100$

