MATH 314 Spring 2018 - Class Notes

3/6/2018
Scribe: Isaac Tray
Summary: Today in class, we discussed quadratic residues, the legendre symbol, it's rules and an example. As well as the jacobi symbol, it's rules.

Notes: Quadratic Residue
Definition: If $x^{2} \equiv b(\bmod p)$ has a solution, we call 'b' a quadratic residue $(\bmod \mathrm{p})$. If it does not have a solution, we call 'b' a quadratic nonresidue.

Legendre Symbol:

Legendre Symbol: $\left(\frac{a}{p}\right)$
Note: Prononced "a on p", and for the legendre symbol, 'p' must be prime

Legendre Symbol Solutions:

1. 0 , if $\mathrm{a} \equiv 0(\bmod \mathrm{p})$
2. 1 , if $x^{2} \equiv \mathrm{a}(\bmod \mathrm{p})$ has a solution
3. -1 , if $x^{2} \equiv \mathrm{a}(\bmod \mathrm{p})$ has no solution

Legendre Symbol Rules:

1. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{p})$ then $\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)$
2. $\left(\frac{1}{p}\right)=1$
3. $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$
4. Quadratic Reciprocity: if p and q are both primes, then $\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)$ if $\mathrm{p} \equiv 3(\bmod 4)$ and $\mathrm{q} \equiv 3(\bmod 4)$
5. $\left(\frac{2}{p}\right)$ is -1 if $\mathrm{p}=3$ or $5(\bmod 8)$ or is 1 if $\mathrm{p}=1$ or $7(\bmod 8)$

Legendre Symbol Example: Is 11 a square $(\bmod 43)$?
$\left(\frac{11}{43}\right)=-\left(\frac{43}{11}\right)($ By Rule 1)
$=-\left(\frac{10}{11}\right)($ Because $43=10(\bmod 11))$
$=-\left(\frac{2}{11}\right)\left(\frac{5}{11}\right)=\left(\frac{5}{11}\right)$ (Because $\left.-\left(\frac{2}{11}\right)=-1\right)$
$\left(\frac{5}{11}\right)=\left(\frac{11}{5}\right)=\left(\frac{1}{5}\right)=1$

Because the final answer is 1,11 is a square $(\bmod 43)$

Jacobi Symbols:

Like Legendre symbols but the number on the bottom can be composite. Note: If $\left(\frac{n}{m}\right)=1$, does not mean n is a square mod m. If the Legendre symbol and Jacobi symbol are both defined they are equal.

Jacobi Symbol Rules:

1. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ then $\left(\frac{a}{n}\right)=\left(\frac{b}{a}\right)$
2. $\left(\frac{1}{n}\right)=1$
3. $\left(\frac{2 a}{n}\right)=\left(\frac{2}{n}\right)\left(\frac{a}{n}\right)$
4. If n and m are odd, then $\left(\frac{n}{m}\right)=-\left(\frac{m}{n}\right)$ if n and $\mathrm{m} \equiv 3(\bmod 4)$ otherwise $\left(\frac{m}{n}\right)$
5. $\left(\frac{2}{n}\right)$ is -1 if $\mathrm{p}=3$ or $5(\bmod 8)$ or is 1 if $\mathrm{p}=1$ or $7(\bmod 8)$
