MATH 314 Spring 2018 - Class Notes

02/07/2018
Scribe: Farbod Farhang
Summary: Introduction to the Hill cypher which is a block cipher

Notes

Block cipher - encrypt multiple letters called blocks of ciphertext
Changing any letter in block of the plaintext should change the entire block of the cipher
Hill Cypher (1929)
Use linear algebra
Break the text into blocks of length m
Key: $m \times m$ Matrix of numbers $(\bmod 26)$
To encrypt

1. take a block of letters and write it as a vector of numbers \vec{v}
2. then multiply by the Matrix of numbers ($m x m$)

3 . finally reduce $(\bmod 26)$
$E(\vec{v}) \equiv \vec{v}(K)(\bmod 26)$
ex. Encrypt "June"
$m=2, \quad K=\left(\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right)$
$" J U N E "=<920><134>$
Encrypt "JU":
$<920>\left(\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right)=<(9(11)+20(3))(9(8)+20(7))>$
$=<(99+60)(72+140)>$
$=<159212>(\bmod 26)$
$=<34>$
$=" \mathrm{DE} "$

Encrypt "NE":
$<134>\left(\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right)=<(13(11)+4(3))(13(8)+4(7))>$
$=<25 \quad 2>$
$=$ "ZC"
so, "JUNE" = "DEZC"
ex. Encrypt "Dune"
"DUNE" $=<320><134>$
$E(<320>)=<320>\left(\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right)=<158>=" \mathrm{PI} "$
$E(<134>)=" \mathrm{ZC} "$
so, "DUNE" = "PIZC"
Need to be able to Decrypt messages too. to so this you need to find the decryption function:
$E(\vec{v}) \equiv \vec{w}(\bmod 26)$
Bob knows K and \vec{w}, he wants to get \vec{v} (The plaintext)
To solve this, we need to find an inverse matrix of K called K^{-1}
$\vec{v} K \equiv \vec{w}(\bmod 26)$
$(K)\left(K^{-1}\right)=I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Where I is the identity matrix
Inverse of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ or K is $\left((a(d)-b(c))^{-1}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ or K^{-1}
NOTE the key matrix for the Hill Cipher must have a determinant which does not have any factors in common with 26
ex. $K=\left(\begin{array}{ll}7 & 2 \\ 3 & 10\end{array}\right)$
determinant $(\operatorname{det})(K)=70-6=64$
Since the determinant is even this matrix is not valid for the Hill Cypher

Decryption function: $D(\vec{w})=(\vec{w})\left(K^{-1}\right)$
If $K=\left(\begin{array}{cc}11 & 8 \\ 3 & 7\end{array}\right)$ then $\left.K^{-1} \equiv(77-24)^{-1}\left(\begin{array}{cc}7 & -8 \\ -3 & 11\end{array}\right)(\bmod 26)\right)$

$$
\begin{aligned}
& \equiv 53(\bmod 26)\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right) \\
& \equiv\left(1^{-1}\right)\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right) \\
& \equiv(1)\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right) \\
& \equiv\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right)
\end{aligned}
$$

ex. Decrypt "DEZC"

$$
\begin{aligned}
D(" D E ") & =D(<3 \quad 4>) \\
& =(<3 \quad 4>)\left(\begin{array}{ll}
7 & 18 \\
23 & 11
\end{array}\right) \\
& \equiv<(21+92) \quad(54+44)>(\bmod 26) \\
& \equiv<113 \quad 98>(\bmod 26) \\
& \equiv<9 \quad 20>\quad(\bmod 26) \\
& =" \mathrm{JU} " \\
D(" Z C ") & =D(<25 \quad 2>) \\
& =(<25 \quad 2>)\left(\begin{array}{cc}
7 & 18 \\
23 & 11
\end{array}\right) \\
& \equiv<134>(\bmod 26) \\
& =" N E " \\
\text { so "DEZC" } & =" J U N E "
\end{aligned}
$$

Benefits:
This is much more secure than previous block sizes
For large block sizes, the Hill Cypher is secure against ciphertext only attacks
Drawbacks:
Small block size which allows: Brute force attack possible Frequency analysis of digrams or trigrams

Eve does a chosen plaintext attack against a 2×2 Hill Cypher
Goal is to recover the key $=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
First encrypt "BA" $=<10>$

$$
E\left(<1 \begin{array}{lll}
1 & 0
\end{array}>\right)=<\begin{array}{lll}
1 & 0
\end{array}>\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=<\begin{array}{ll}
a & b
\end{array}>
$$

then encrypt "AB" $=<01>$

