Notes of Feb 28, 2018

Pushkar R. Tiwari

Definition : a is a primitive root modulo is prime p is the powers a^1, a^2, a^3, a^{n-1} produce all of the non zero residues modulo p.

Theorem: Every prime number has primitive roots. It has $\varphi(p-1)$ many of them.

For what values of b does $X^2 \equiv b \pmod{11}$ have a solution? 1,3,4,5,9

Why does $X^2 \equiv 6 \pmod{11}$ not have a solution ? Try all values of X, nothing works

a	a^2
1	1
2	4
3	9
4	5
5	3
6	3
7	5
8	9
9	4
10	1
u	

 \to Definition : We say that a (mod n) is a quadratic residue modulo n if $X^2 \equiv a \pmod{n}$ has at least one solution.

Def: if $X^2 \equiv a \pmod{n}$ does not have a solution then is called a quadratic non-residue.

How can we tell if a is a quadratic residue modulo a prime number P(without trying all possible values of X)?

 $\begin{array}{l} \text{Define the Legendre Symbol ("a on P") as follows:} \\ \left(\frac{a}{P}\right) \left\{ \begin{array}{ll} 1 & \text{if} \quad \mathbf{X}^2 \equiv a \pmod{\mathbf{P}} \text{ has a solution} \\ -1 & \text{if} \quad \mathbf{X}^2 \equiv a \pmod{\mathbf{P}} \text{ does not have a solution} \\ 0 & \text{if} \quad a \equiv 0 \pmod{\mathbf{P}} \text{ does not have a solution} \end{array} \right.$

Legendre symbol is only defined when the number on bottom is prime.

Rules for Legendre Symbols 1. If $a \equiv b \pmod{P}$ then (a/P)=(b/P)

2. (1/p)=1(1 is always a quadratic residue.)

3.(ab/P) = (a/P)(b/P)

4. Quadratic Reciprocity: If p and q are both odd primes then, $(q/p) = \begin{cases} -(p/q) & \text{if} & p \equiv 3(mod4) \text{ and } q \equiv 3(mod \ 4) \\ (p/q) & \text{otherwise} \end{cases}$ $5.(2/p) = \begin{cases} 1 & \text{if } p \text{ is } 1 \text{ or } 7(mod \ 8) \\ -1 & \text{if } p \text{ is } 3 \text{ or } 5(mod \ 8) \end{cases}$

Biggest problem with Legendre symbols is the need to factor the number on top.

Once we get to really large numbers this won't always be possible.

Jacobi symbol:

Like the Legendre Symbol in that $(p/q) = \begin{cases} 1 & \text{if } p \text{ is quadratic residue (mod q)} \\ -1 & \text{if } p \text{ is not quadratic residue (mod q)} \end{cases}$

But it doesn't mean anything if the number on bottom is composite. $(n/m)=\{+1/-1$ but (n/m)=1 does not necessarily mean that $X^2\equiv n \pmod{m}$ has a solution.

Rules for Jacobi Symbol

1. If a $\equiv b (mod n)$ then $(a/n) {=} (b/n)$

2.(1/n)=1

$$3.(2n/m)=(2/m)(n/m)$$

4. If n and m are both odd and gcd(m,n)=1 then, $(n/m)=\begin{cases} -(m/n) & \text{if} \quad m\equiv 3(mod4) \text{ and } n\equiv 3(mod\ 4) \\ (m/n) & \text{otherwise} \end{cases}$ $5.(2/n)=\begin{cases} 1 & \text{if } n \text{ is } 1 \text{ or } 7(mod\ 8) \\ -1 & \text{if } n \text{ is } 3 \text{ or } 5(mod\ 8) \end{cases}$