Notes of Feb 28, 2018

Pushkar R. Tiwari

Definition: a is a primitive root modulo is prime p is the powers $a^{1}, a^{2}, a^{3}, a^{n-1}$ produce all of the non zero residues modulo p.

Theorem: Every prime number has primitive roots. It has $\varphi(p-1)$ many of them.
For what values of b does $X^{2} \equiv b \quad(\bmod 11)$ have a solution?
$1,3,4,5,9$
Why does $X^{2} \equiv 6 \quad(\bmod 11)$ not have a solution?
Try all values of X , nothing works

a	a^{2}
1	1
2	4
3	9
4	5
5	3
6	3
7	5
8	9
9	4
10	1

\rightarrow Definition: We say that a $(\bmod n)$ is a quadratic residue modulo n if $X^{2} \equiv a(\bmod \mathrm{n})$ has at least one solution.

Def: if $X^{2} \equiv a(\bmod n)$ does not have a solution then is called a quadratic non-residue.

How can we tell if a is a quadratic residue modulo a prime number P (without trying all possible values of X)?

Define the Legendre Symbol ("a on P ") as follows:
$\left(\frac{a}{P}\right)\left\{\begin{array}{rll}1 & \text { if } & \mathrm{X}^{2} \equiv a(\bmod \mathrm{P}) \text { has a solution } \\ -1 & \text { if } & \mathrm{X}^{2} \equiv \mathrm{a}(\bmod \mathrm{P}) \text { does not have a solution } \\ 0 & \text { if } & a \equiv 0(\bmod \mathrm{P}) \text { does not have a solution }\end{array}\right.$

Legendre symbol is only defined when the number on bottom is prime.

Rules for Legendre Symbols

1. If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{P})$ then $(\mathrm{a} / \mathrm{P})=(\mathrm{b} / \mathrm{P})$
2. $(1 / \mathrm{p})=1$ (1 is always a quadratic residue.)
3. $(\mathrm{ab} / \mathrm{P})=(\mathrm{a} / \mathrm{P})(\mathrm{b} / \mathrm{P})$
4. Quadratic Reciprocity: If p and q are both odd primes then,
$(\mathrm{q} / \mathrm{p})=\left\{\begin{array}{rc}-(p / q) & \text { if } \\ (p / q) & \text { otherwise }\end{array}\right.$
$5 .(2 / p)=\left\{\begin{array}{rll}1 & \text { if } & \mathrm{p} \text { is } 1 \operatorname{or} 7(\bmod 8) \\ -1 & \text { if } & \mathrm{p} \text { is } 3 \text { or } 5(\bmod 8)\end{array}\right.$
Biggest problem with Legendre symbols is the need to factor the number on top.
Once we get to really large numbers this won't always be possible.

Jacobi symbol:

Like the Legendre Symbol in that $(p / q)=\left\{\begin{array}{rll}1 & \text { if } & \text { p is quadratic residue }(\bmod q) \\ -1 & \text { if } & \text { p is not quadratic residue }(\bmod q)\end{array}\right.$
But it doesn't mean anything if the number on bottom is composite.
$(\mathrm{n} / \mathrm{m})=\{+1 /-1$
but $(n / m)=1$ does not necessarily mean that $X^{2} \equiv \mathrm{n}(\bmod m)$ has a solution.

Rules for Jacobi Symbol

1.If $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ then $(\mathrm{a} / \mathrm{n})=(\mathrm{b} / \mathrm{n})$
$2 .(1 / n)=1$
3. $(2 \mathrm{n} / \mathrm{m})=(2 / \mathrm{m})(\mathrm{n} / \mathrm{m})$
4. If n and m are both odd and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$ then,
$(\mathrm{n} / \mathrm{m})=\left\{\begin{array}{rcc}-(m / n) & \text { if } & m \equiv 3(\bmod 4) \text { and } \mathrm{n} \equiv 3(\bmod 4) \\ (m / n) & \text { otherwise }\end{array}\right.$
$5 .(2 / n)=\left\{\begin{array}{rll}1 & \text { if } & \mathrm{n} \text { is } 1 \text { or } 7(\bmod 8) \\ -1 & \text { if } & \mathrm{n} \text { is } 3 \text { or } 5(\bmod 8)\end{array}\right.$

