MATH 314 Spring 2018 - Class Notes

02/27/2018
Scribe: Brian Roshal
Summary: Today in class, we covered Finite Fields and polynomials over finite fields.
Notes: If we are doing modular arithmetic modulo a prime number p , then every residue besides 0 is invertible.

Recall: a ring is a set of things that can be added, subtracted, multiplies (sometimes, divided).

Ex: Integers, Rational numbers, Real numbers, Integers mod n, Complex numbers, Square matrices, and Polynomials.

Definition: a ring where every element is invertible besides 0 is called a field.

Rational Numbers: \mathbb{Q}
Real Numbers: \mathbb{R}
Complex Numbers: \mathbb{C}
Integers modulo p, p is prime:
We call a field with finitely many things in it a Finite Field
Fact: For any integer n, there exists at most one field with exactly n elements in it. If it exists, we call is \mathbb{F}_{n}

Note: If n is not prime, then \mathbb{F}_{n} is not the integer mod n.
$\begin{array}{llll} \\ + & 1 & 2 & 3\end{array}$
$\begin{array}{lllll}0 & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{lllll}1 & 1 & 2 & 3 & 0\end{array}$
$\begin{array}{lllll}2 & 2 & 3 & 0 & 1\end{array}$
$\begin{array}{lllll}3 & 3 & 0 & 1 & 2\end{array}$
$\begin{array}{lllll}\mathrm{x} & 0 & 1 & 2 & 3\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}$

1	0	1	2	3

$\begin{array}{lllll}2 & 0 & 2 & 0 & 2\end{array}$
$\begin{array}{lllll}3 & 0 & 3 & 2 & 1\end{array}$

The row of 2 is not a field because 2 is not invertible
Start with $\mathbb{F}_{2}[\mathrm{x}]$, this is the set of all polynomials with coefficients in \mathbb{F}_{2}.
Ex: $g(x)=x^{3}+x+1$
$f(x)=x^{2}+x$
Compute $f(x)+g(x)$
$f(x)+g(x)=x^{3}+x^{2}+2 x+1=x^{3}+x^{2}+1$
In this example, $\bmod =2$, multiplying by 2 is equivalent to multiplying by 0 .
Weird fact: in $\mathbb{F}_{2}[\mathrm{x}]$, addition and subtraction are the same thing. $f(x)+g(x)=f(x)-g(x)$
$f(x) \cdot g(x)=\left(x^{2}+x\right)\left(x^{3}+x+1\right)$
$=\left(x^{5}+x^{3}+x^{2}\right)+\left(x^{4}+x^{2}+x\right)$
$=x^{5}+x^{4}+x^{3}+2 x^{2}+x$
$=x^{5}+x^{4}+x^{3}+x$
So $\mathbb{F}_{2}[\mathrm{x}]$ is a ring, even though we can't do division, we can still do division with remainder.
We want the remainder to be a polynomial who's size and degree is smaller than the quotient.
Divide $g(x)$ by $f(x)$ with remainder
$\left(x^{3}+x+1\right) /\left(x^{2}+x\right)=x+1 R 1$
$x^{3}+x+1 \equiv 1\left(\bmod x^{2}+x\right)$
Ring: Integers modulo a prime number $p \rightarrow$ Field \mathbb{F}_{p}
Ring: Polynomials mod 2 modulo an irreducible polynomial $p(x)$ of degree $n \rightarrow$ Field $\mathbb{F}_{2^{\mathrm{n}}}$ arithmetic mod 2.

Say $p(x) \in \mathbb{F}_{2}[x]$ is irreducible, if the only polynomial of smaller degree that evenly divides it is 1 . Let's find \mathbb{F}_{4}
Claim that $p(x)=x^{2}+x+1$ is irreducible
Check $\left(x^{2}+x+1\right) /(x)=x+1 R 1\left(x^{2}+x+1\right) /(x+1)=x R 1$
Arithmetic mod $x^{2}+x+1$

	+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$	
1	1	0	$\mathrm{x}+1$	x	
x	x	$\mathrm{x}+1$	0	1	

$$
\begin{array}{lllllll}
\mathrm{x}+1 & \mathrm{x}+1 & \mathrm{x} & 1 & 0 \\
& & & & & & \\
& \mathrm{x} & 0 & 1 & \mathrm{x} & \mathrm{x}+1 & \\
0 & 0 & 0 & 0 & 0 & & \\
1 & 0 & 1 & \mathrm{x} & \mathrm{x}+1 & \\
\mathrm{x} & 0 & \mathrm{x} & \mathrm{x}+1 & 1 & \\
\mathrm{x}+1 & 0 & \mathrm{x}+1 & 1 & \mathrm{x} &
\end{array}
$$

