2/26/18 Class Notes

Manish Joshi

March 9, 2018

When we are doing arithmetic modulo a prime number p, every residue besides 0 is inversible. This means that we can divide by everything except 0 .

Field -A ring where it is possible to divide by any element except 0 is called a field. Ex- Real numbers R ,Rational numbers Q, Arithmetic modulo a prime number 'p' F_{p}

1 Finite Field

We call a field like F_{p} with finitely many things in it a Finite Field. If $\mathrm{n}=\mathrm{p}$ is prime then, F_{p} is the integers mod p. If n is not prime then F_{n} is not the integers mod n. For example, Consider, $n=4$. Write down the addition and multiplication table mod 4.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2
X	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

1.1 Polynomials

Let $F_{2}[2]$ be the collection of polynomial whose coefficients are elements of $F_{2}[2]$ (0 or 1).

Example: $\mathrm{g}(\mathrm{x})=x^{3}+x+1\left(\mathrm{~g}(\mathrm{x})\right.$ is in $\left.F_{2}\right)$
If f and g are two polynomials in $F_{2}[\mathrm{x}]$, we can add them:
$\mathrm{g}(\mathrm{x})=x^{3}+x+1$
$\mathrm{f}(\mathrm{x})=x^{2}+x$
$\mathrm{g}(\mathrm{x})+\mathrm{f}(\mathrm{x})=x^{3}+x^{2}+1(\mathrm{x}+\mathrm{x}=2 \mathrm{x}$ which is $0 \mathrm{x} \bmod 2)$
Note: Addition and Substraction are the same in $F_{2}[\mathrm{x}]$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})=\left(x^{2}+x\right)\left(x^{3}+x+1\right) \\
& =\left(x^{5}+x^{3}+x^{2}\right)+\left(x^{4}+x^{2}+x\right) \\
& =x^{5}+x^{4}+x^{3}+x
\end{aligned}
$$

So, F2[x] is a ring.
Even though we can't divide any two polynomials in $\mathrm{F} 2[\mathrm{x}]$, we can do division with remainder. So, the remainder should have degree smaller than the quotient.
$x^{3}+x+1 / x^{2}+x$ is $\mathrm{x}+1$ remainder 1.
$\mathrm{g}(\mathrm{x})=x^{3}+x+1 \equiv 1\left(\bmod x^{2}+x\right)$
F2[x]- irreducible polynomial $p(x)$ of degree n.
Say that $\mathrm{p}(\mathrm{x})<-\mathrm{F} 2[\mathrm{x}]$ is rreducible if it cannot be evenly divided by any polynomial of smaller degree besides 1 .
Arithmetic in $F_{2}[x]$ modulo $\mathrm{p}(\mathrm{x}) F_{2^{n}}$.
Example:
Construct F_{4}.

$$
F_{4}=F_{2^{2}}
$$

Claim: $x^{2}+x+1$ is irreducible in $F_{2}[x]$.
What are the polynomials of smaller degree?
$x, x+1$
$x^{2}+x+1 / x$ is $\mathrm{x}+1$ remainder 1.
$x^{2}+x+1 / x+1$ is x remainder 1 .
So, arithmetic mod $x^{2}+x+1$ is a field.
Possible remainders are $\{x, x+1,1,0\}=F_{4}$.

+	0	1	x	$\mathrm{x}+1$
0	0	1	x	$\mathrm{x}+1$
1	1	0	$\mathrm{x}+1$	x
x	x	$\mathrm{x}+1$	0	1
$\mathrm{x}+1$	$\mathrm{x}+1$	x	1	0

X	0	1	x	$\mathrm{x}+1$
0	0	0	0	0
1	0	1	x	$\mathrm{x}+1$
x	0	x	$\mathrm{x}+1$	1
$\mathrm{x}+1$	0	$\mathrm{x}+1$	1	0

Note: Everything in F_{4} is invertible other than 0.

