2/26/18 Class Notes

Manish Joshi

March 9, 2018

When we are doing arithmetic modulo a prime number p, every residue besides 0 is inversible. This means that we can divide by everything except 0.

Field -A ring where it is possible to divide by any element except 0 is called a field. Ex- Real numbers R ,Rational numbers Q, Arithmetic modulo a prime number 'p' F_p

1 Finite Field

We call a field like F_p with finitely many things in it a Finite Field. If n=p is prime then, F_p is the integers mod p. If n is not prime then F_n is not the integers mod n. For example, Consider, n = 4. Write down the addition and multiplication table mod 4.

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\begin{array}{c} 2\\ 3\end{array}$	3	0	1
3	3	0	1	2
Х	0	1	2	3
X 0	0	1 0	$\frac{2}{0}$	$\frac{3}{0}$
0				$\begin{array}{c} 0 \\ 3 \end{array}$
	0	0	0	0

1.1 Polynomials

Let $F_2[2]$ be the collection of polynomial whose coefficients are elements of $F_2[2]$ (0 or 1).

Example: $g(x) = x^3 + x + 1$ (g(x) is in F_2) If f and g are two polynomials in $F_2[x]$, we can add them: $g(x) = x^3 + x + 1$ $f(x) = x^2 + x$ $g(x) + f(x) = x^3 + x^2 + 1$ (x+x = 2x which is 0x mod 2)

Note: Addition and Substraction are the same in $F_2[\mathbf{x}]$.

$$\begin{aligned} \mathbf{f}(\mathbf{x}) \cdot \mathbf{g}(\mathbf{x}) &= (x^2 + x)(x^3 + x + 1) \\ &= (x^5 + x^3 + x^2) + (x^4 + x^2 + x) \\ &= x^5 + x^4 + x^3 + x \end{aligned}$$

So, F2[x] is a ring.

Even though we can't divide any two polynomials in F2[x], we can do division with remainder. So, the remainder should have degree smaller than the quotient.

 x^3+x+1/x^2+x is x+1 remainder 1. g(x)= $x^3+x+1\equiv 1(modx^2+x)$

F2[x]- irreducible polynomial p(x) of degree n. Say that p(x) <- F2[x] is rreducible if it cannot be evenly divided by any polynomial of smaller degree besides 1. Arithmetic in $F_2[x]$ modulo p(x) F_{2^n} . Example: Construct F_4 .

 $F_4 = F_{2^2}.$ Claim: $x^2 + x + 1$ is irreducible in $F_2[x]$. What are the polynomials of smaller degree? x, x + 1

 $x^2 + x + 1/x$ is x+1 remainder 1. $x^2 + x + 1/x + 1$ is x remainder 1.

So, arithmetic mod $x^2 + x + 1$ is a field. Possible remainders are $\{x, x + 1, 1, 0\} = F_4$.

+	0		1		х	x+1
0	0		1		х	x+1
1	1		0	3	x+1	х
х	х		x+	-1	0	1
x+1	x+	-1	х		1	0
Х	0	1		х	х	+1
0	0	0		0	0)
1	0	1		х	х	:+1
х	0	х		x+	1 1	
x+1	0	X-	+1	1	0)

Note: Everything in F_4 is invertible other than 0.