MATH 314 Spring 2018 - Class Notes

2/22/2018
Scribe: Sultan Alneyadi
Summary: Today we covered Euler's Phi function, Euler's theorem and 3 pass-protocol.

Euler's Phi function(totient function):

Definition:
φ - Greek letter Phi (ϕ)
$\varphi(\mathrm{n})=$ number of residues mod n that are coprime to n
$\varphi(26)=12$
Chines remainder theorm tells us that for every a and b

$$
\begin{aligned}
& x \equiv a(\bmod p) \\
& x \equiv b(\bmod q)
\end{aligned}
$$

a can be anything from 1 to $\mathrm{p}-1,(\mathrm{p}-1)$ possiblities for a b can be anything from 1 to $\mathrm{q}-1$, ($\mathrm{q}-1$) possiblities for b
let p be prime
$\varphi(\mathrm{p})=\mathrm{p}-1$
suppose q is also prime and $\mathrm{p} \neq \mathrm{q}$
$\varphi(\mathrm{pq})$
$\varphi(\mathrm{pq})=(\mathrm{p}-1)(\mathrm{q}-1)=\mathrm{pq}\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)$
$\varphi(26)=\varphi\left(13^{*} 2\right)=(12)(1)=12$
$\Pi \leftarrow$ Multiplication version of \sum for addition

$$
\begin{aligned}
\varphi(\mathrm{n})= & \mathrm{n} \prod\left(1-\frac{1}{p}\right) \\
\varphi(100) & =100 \prod_{\left(1-\frac{1}{p}\right)} \quad \mathrm{p} \in 2,5 \\
& =100\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right) \\
& =100\left(\frac{1}{2}\right)\left(\frac{4}{5}\right) \\
& =40
\end{aligned}
$$

Euler's Theorem:

if a and b are coprime then
$a^{\varphi(n)} \equiv 1(\bmod \mathrm{n})$
if $\mathrm{n}=\mathrm{p}$ is prime then
$\varphi(\mathrm{p})=\mathrm{p}-1$
then Euler's theorem says
$a^{\varphi(p)}=a^{p-1} \equiv 1(\bmod \mathrm{p}) \leftarrow$ Format's little theorem
example:
$\mathrm{n}=6$, let $\mathrm{a}=5, a^{\varphi(n)}$
$\varphi(6)=6\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)$
$=6\left(\frac{1}{2}\right)\left(\frac{2}{3}\right)$

$$
=2
$$

$5^{\varphi(6)} \equiv 5^{2} \equiv 1(\bmod 6)$

General principle for exponents in modular arithmetic: if you are doing arithmetic (mod n) them all that matters in the exponent is the value $\bmod \varphi(\mathrm{n})$
compute $5^{2} 3(\bmod 6)$
since $23 \equiv 1(\bmod \varphi(6))$
$5^{2} 3 \equiv 5^{1} \equiv 5(\bmod 6)$

3 pass-protocol

- Physical world version:

Alice want to mail Bob a box through the mail, Alice takes the box and puts her lock on it, mails it to Bob, Bob locks the box again with his lock, Alice removes her lock, Bob unlocks the box and retrieve whats inside.

- Math version:

Message is encoded as a number, Alice pick a large prime number P (not secret), Alice picks a secret number a coprime to $\mathrm{p}-1$, Bob picks a secret number b coprime to p-1, Eve encrypts m with $E_{A}(\mathrm{~m})=m^{a}(\bmod \mathrm{p})$,
Eve computes $a^{-1}(\bmod p-1)$
Bob computes $b^{\prime} \equiv b^{-1}(\bmod \mathrm{p}-1)$
$D_{A}(\mathrm{C}) \equiv C^{a^{\prime}}(\bmod \mathrm{p})$
$\mathrm{C}=E_{A}(\mathrm{~m}) \equiv m^{a}(\mathrm{~m} \bmod \mathrm{p})$
$D_{A}(\mathrm{C})=C^{a^{\prime}}(\mathrm{m} \bmod \mathrm{p})$
$=\left(m^{a}\right)^{a^{\prime}}(\bmod \mathrm{p})$
$=m^{a a^{\prime}}(\bmod \mathrm{p})$
$=m^{\ell(p-1)+r}(\bmod \mathrm{p})$
$=\left(m^{p-1}\right)^{\ell} \mathrm{m}(\bmod \mathrm{p})$
$=\mathrm{m}(\bmod \mathrm{p})$

- Math version of 3 pass protocol

Alice computes $C_{1} \equiv m^{a}(\bmod \mathrm{p})$
sends to bob
Bob computes $C_{2} \equiv C_{2}^{a}(\bmod \mathrm{p})$
sends to Alice
she raises to the a^{\prime} power

$$
C_{3} \equiv C_{2}^{a^{\prime}}(\bmod \mathrm{p})
$$

Bob computes $C_{4} \equiv C_{3}^{b^{\prime}}(\bmod \mathrm{p})$

$$
\begin{aligned}
C_{4} & \equiv C_{3}^{b^{\prime}} \equiv\left(C_{2}^{a^{\prime}}\right)^{b^{\prime}} \equiv\left(\left(C_{1}^{b}\right)^{a^{\prime}}\right)^{b^{\prime}} \equiv\left(\left(\left(m^{a}\right)^{b}\right)^{a^{\prime}}\right)^{b^{\prime}} \\
& \equiv m^{a b a^{\prime} b^{\prime}}(\bmod \mathrm{p}) \\
& \equiv m(\bmod \mathrm{p})
\end{aligned}
$$

