2/19/2018 Class Notes

Jonathan Schoene

February 27, 2018

Definition: We say that m and n are coprime if the gcd(greatest common denominator) $=1$

- Example: 10 and 21 are coprime 10 and 6 are not coprime

Theorem(Restated): The residue of $a(\bmod m)$ has an inverse if and only if a and m are coprime

Chinese Remainder Theorem:

- If m and n are coprime integers then the equations $\mathrm{x} \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$ have a unique solution modulo $\mathrm{m} * \mathrm{n}$
- Example:
$x \equiv 17(\bmod 26)$
$x \equiv 1(\bmod 2)$
$x \equiv 4(\bmod 13)$
- Notice that the modulo in the second two equations are coprime factors of 26.
- The Chinese Remainder Theorem tells us that 17 is the only remainder $(\bmod 26)$ that satisfies both equations
- Pick two small prime numbers
$x \equiv 6(\bmod 11)$
$x \equiv 11(\bmod 13)$
- Chinese Remainder Theorem says that there is a number modulo $11 * 13$ that satisfies both equations.
- Using these equations we can also say $x \equiv 6+k(11)$ and using our second equation we have $x \equiv 11(\bmod 13)$
- Therefore $6+k(11) \equiv 11(\bmod 13)$ $k(11) \equiv 5(\bmod 13)$
$k * 11 * 6 \equiv 5 * 6(\bmod 13)$
$k \equiv 4(\bmod 13)$
- We need to find 11^{-1} using Euclids Algorithm: $\operatorname{gcd}(13,11)$ gives us the equation $1 \equiv 6(11) \bmod (13)$
- Lets try using $\mathrm{k}=4$ $x \equiv 6+4(11) \equiv 50$ and $50 \equiv 11(\bmod 13)$ Therefore $x \equiv 50(\bmod 143)$ is the unique solution to both $x \equiv 6(\bmod 11)$ and $x \equiv 11(\bmod 13)$

Modular Exponentiation

- Way to compute $a^{k}(\bmod m)$ very fast, even if k is a very large number
- Suppose you want to compute $5^{521}(\bmod 11)$
- Repeated squaring lets us compute $a^{2^{k}}(\bmod m)$ quickly
- Start with a and square it to get a^{2} reduce $(\bmod m)$, then you square it again to get a^{4}, then again for a^{8}
- Reduce $(\bmod m)$ after every step to make sure the numbers don't get too big
- Example

Write k in base 2
$5^{521}=>521=512+8+1$
Use repeated squaring to compute $a^{2^{i}}(\operatorname{modm})$ for each power of 2 showing up in the binary for k
$5^{1} \equiv 5(\bmod 11)$
$5^{2} \equiv 3(\bmod 11)$
$5^{4} \equiv 9(\bmod 11)$
$5^{8} \equiv 4(\bmod 11)$
$5^{16} \equiv 5(\bmod 11)$
$5^{32} \equiv 3(\bmod 11)$
$5^{64} \equiv 9(\bmod 11)$
$5^{128} \equiv 4(\bmod 11)$
$5^{256} \equiv 5(\bmod 11)$
$5^{512} \equiv 3(\bmod 11)$
We know that we need the values for $2^{9}, 2^{3}$, and 2^{0} and then we multiply those values together
So we have $5^{521}=>5^{521}+5^{8}+5^{0}$ which by the repeated squares we did above $5^{521}=5 * 4 * 3(\bmod 11)=5(\bmod 11)$

- This means that repeated squaring lets us compute this is time O (logk) and we never need to store numbers larger than m^{2}
- We can also use this to find the last digit of 3 raised to the 136 th power
This is asking for $3^{136}(\bmod 10)$
$136=128+8$
$3^{1}=3(\bmod 10)$
$3^{2}=9(\bmod 10)$

$$
\begin{aligned}
& 3^{4}=1(\bmod 10) \\
& 3^{8}=1(\bmod 10) \\
& \ldots \\
& 3^{128}=1(\bmod 10)
\end{aligned}
$$

This means that the last digit of the number would be a 1

Femat's Little Theorem

- If p is a prime number and a is coprime to p the $a^{p} \equiv a(\bmod p)$ and $a^{p-1} \equiv 1(\bmod p)$
Try this out!
$\mathrm{a}=2$ and $\mathrm{p}=5$
$a^{p-1} \equiv 2^{5-1} \equiv 2^{4} \equiv 16 \equiv 1(\bmod 5)$
Let $\mathrm{p}=7$
$a^{p-1} \equiv 2^{7-1} \equiv 2^{6} \equiv 64 \equiv 1(\bmod 7)$
So it always works!
- What if we try it with a non-prime number?

Let $\mathrm{p}=6$
$a^{p-1} \equiv 2^{6-1} \equiv 2^{5} \equiv 32 \equiv 2(\bmod 6) \neq 1$
So it doesn't work if p is not prime!

- What if we try it with base 3
$\mathrm{a}=3 \mathrm{p}=5$
$a^{p-1} \equiv 3^{5-1} \equiv 3^{4} \equiv 81 \equiv 1(\bmod 5)$
It works!
- If we want to compute $a^{k}(\bmod p)$ we can write k as some $l(p-1)+r$ where r is the remainder when we divide k by $\mathrm{p}-1$ $a^{k} \equiv a^{l *(p-1)} * a^{r} \equiv a^{(p-1)^{l}} * a^{r}(\bmod p) \equiv a^{r}(\bmod p)$
We can say this because according to Femat's little theorem $a^{(p-1)^{l}} \equiv$ 1
- The take home message is...

We want to compute $a^{k}(\bmod \mathrm{p})$ if $\mathrm{k}=\mathrm{r}(\bmod \mathrm{p}-1)$ then $a^{k} \equiv a^{r}(\bmod p)$ Lets try our original example again $5^{521}(\bmod 11)$
Since $521 \equiv 1(\bmod 10)$
$5^{521}(\bmod 11) \equiv 5^{1} \equiv 5(\bmod 11)$

- General principle of modular arithmetic (prime version) is when you do exponentiation $(\bmod p)$ you do arithmetic inside the exponent $(\bmod \mathrm{p}-1)$

