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Definition: We say that m and n are coprime if the gcd(greatest common
denominator) = 1

• Example: 10 and 21 are coprime 10 and 6 are not coprime

Theorem(Restated): The residue of a(mod m) has an inverse if and only if a
and m are coprime

Chinese Remainder Theorem:

• If m and n are coprime integers then the equations x ≡ a(modm) and
x ≡ b(modn) have a unique solution modulo m * n

• Example:
x ≡ 17(mod26)
x ≡ 1(mod2)
x ≡ 4(mod13)

– Notice that the modulo in the second two equations are coprime
factors of 26.

– The Chinese Remainder Theorem tells us that 17 is the only remain-
der (mod 26) that satisfies both equations

• Pick two small prime numbers
x ≡ 6(mod11)
x ≡ 11(mod13)

– Chinese Remainder Theorem says that there is a number modulo
11*13 that satisfies both equations.

– Using these equations we can also say x ≡ 6 + k(11) and using our
second equation we have x ≡ 11(mod13)

– Therefore 6 + k(11) ≡ 11(mod13)
k(11) ≡ 5(mod13)
k ∗ 11 ∗ 6 ≡ 5 ∗ 6(mod13)
k ≡ 4(mod13)
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– We need to find 11−1 using Euclids Algorithm: gcd(13,11) gives us
the equation 1 ≡ 6(11)mod(13)

– Lets try using k = 4
x ≡ 6 + 4(11) ≡ 50 and 50 ≡ 11(mod13)
Therefore x ≡ 50(mod143) is the unique solution to both x ≡ 6(mod11)
and x ≡ 11(mod13)

Modular Exponentiation

• Way to compute ak(modm) very fast, even if k is a very large number

• Suppose you want to compute 5521(mod11)

– Repeated squaring lets us compute a2k(mod m) quickly
– Start with a and square it to get a2 reduce (mod m), then you square

it again to get a4, then again for a8

– Reduce (mod m) after every step to make sure the numbers don’t get
too big

– Example
Write k in base 2
5521 => 521 = 512 + 8 + 1
Use repeated squaring to compute a2i(modm) for each power of 2
showing up in the binary for k
51 ≡ 5(mod11)
52 ≡ 3(mod11)
54 ≡ 9(mod11)
58 ≡ 4(mod11)
516 ≡ 5(mod11)
532 ≡ 3(mod11)
564 ≡ 9(mod11)
5128 ≡ 4(mod11)
5256 ≡ 5(mod11)
5512 ≡ 3(mod11)
We know that we need the values for 29, 23, and 20 and then we
multiply those values together
So we have 5521 => 5521 + 58 + 50 which by the repeated squares
we did above 5521 = 5 ∗ 4 ∗ 3(mod11) = 5(mod11)

– This means that repeated squaring lets us compute this is time
O(logk) and we never need to store numbers larger than m2

– We can also use this to find the last digit of 3 raised to the 136th
power
This is asking for 3136(mod10)
136 = 128 + 8
31 = 3(mod10)
32 = 9(mod10)
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34 = 1(mod10)
38 = 1(mod10)
...
3128 = 1(mod10)
This means that the last digit of the number would be a 1

Femat’s Little Theorem

– If p is a prime number and a is coprime to p the ap ≡ a(modp) and
ap−1 ≡ 1(modp)
Try this out!
a=2 and p=5
ap−1 ≡ 25−1 ≡ 24 ≡ 16 ≡ 1(mod5)
Let p = 7
ap−1 ≡ 27−1 ≡ 26 ≡ 64 ≡ 1(mod7)
So it always works!

– What if we try it with a non-prime number?
Let p = 6
ap−1 ≡ 26−1 ≡ 25 ≡ 32 ≡ 2(mod6) 6= 1
So it doesn’t work if p is not prime!

– What if we try it with base 3
a = 3 p = 5
ap−1 ≡ 35−1 ≡ 34 ≡ 81 ≡ 1(mod5)
It works!

– If we want to compute ak(modp) we can write k as some l(p− 1) + r
where r is the remainder when we divide k by p-1
ak ≡ al∗(p−1) ∗ ar ≡ a(p−1)l ∗ ar(modp) ≡ ar(modp)
We can say this because according to Femat’s little theorem a(p−1)l ≡
1

– The take home message is...
We want to compute ak(mod p) if k = r(mod p-1) then ak ≡ ar(modp)
Lets try our original example again
5521(mod11)
Since 521 ≡ 1(mod10)
5521(mod11) ≡ 51 ≡ 5(mod11)

– General principle of modular arithmetic (prime version) is when you
do exponentiation(mod p) you do arithmetic inside the exponent
(mod p-1)
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