Class Notes 02/14/2018

Jacob Nolen
February 27, 2018

A perfect secrecy for a cryptosystem
$\mathrm{P}($ the message was P$)=\mathrm{P}($ the message was $\mathrm{P} \mid$ cipher was C$)$
Alice and Bob send the messages "Yes", "No", and "Maybe"
Frequency of messages: Yes- $\frac{5}{10}$, No- $\frac{3}{10}$, Maybe- $\frac{2}{10}$
Use a cryptosystem with 3 keys k_{1}, k_{2}, k_{3}

Table 1: Encryption:

	k_{1}	k_{2}	k_{3}
Yes	a	b	c
No	b	c	d
Maybe	c	d	a

On any given day they chose one of the keys at random. Each key is used with probability $\frac{1}{3}$. Suppose Eve captures the ciphertext "c" and wants to use this to try to decrypt the message. She wants to know if the message was "Yes". $\mathrm{P}($ message is "yes" $)=\frac{1}{2}$ P (message is "yes" | cipher text is "C")

$$
\frac{\mathrm{P}(\text { message "yes" and ciphertext is "C" })}{\mathrm{P}(\text { ciphertext is "C" })}=\frac{\frac{1}{2} \times \frac{1}{3}}{\left(\frac{5}{10} \times \frac{1}{3}\right)+\left(\frac{3}{10} \times \frac{1}{3}\right)+\left(\frac{2}{10} \times \frac{1}{3}\right)}=\frac{1}{2}
$$

So Eve learned nothing from capturing the ciphertext

Eve Captures "B"
P (message is "yes" | cipher text is "b")
$\frac{\mathrm{P}(\text { message "yes" and ciphertext is "C" })}{\mathrm{P}(\text { ciphertext is "C" })}=\frac{\frac{1}{2} \times \frac{1}{3}}{\left(\frac{5}{10} \times \frac{1}{3}\right)+\left(\frac{3}{10} \times \frac{1}{3}\right)+0}=\frac{5}{8}$
Since $\frac{5}{8}$ is greater than the original $\frac{1}{2}$ probability, she can give a more accurate guess. The system does not have perfect secrecy.

Theorem: The one-time-pad has perfect secrecy.

Disadvatages:

- Really long and hard to remember keys
- Can only use the key one time
- No way to transmit keys
- Impractical for actual use

Tools for elementary number theory:

How do we compute GCDs?
$\operatorname{gcd}(6,10)=2$
Factor the numbers and take all the factors they have in common

Problem: Factoring big numbers is hard so we use Euclids Algorithm for GCDs:
If you want to find the GCD of a,b use division with remainder. Divide a by b. m is the quotient with Remainder r . This is equivalent to $a=b \times m+r$.

If r is the remainder when a is divided by b, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$
Repeat this over and over until we get a remainder of c that the last value of r is the gcd.
$\operatorname{GCD}(79,19)$
$1 9 \longdiv { 7 9 }$
$\begin{gathered}\frac{76}{3} \\ 79= \\ 19\end{gathered} \times 4+3$
$\operatorname{GCD}(19,3)$
6
19
$\underline{18}$
-1

$$
19=3 \times 6+1
$$

$\operatorname{GCD}(3,1)$
$1 \longdiv { 3 }$
$\frac{3}{0}$
$3=1 \times 3+0$
$\operatorname{SO} . .$. the $\operatorname{GCD}(79,19)=1$

Factoring method runs in the $\mathrm{O}(\mathrm{a}+\mathrm{b})$ while Euclids algorithm runs in time $\mathrm{O}(\log \mathrm{a}+\log \mathrm{b})$.

Extended Euclids Algorithm lets us compute inverses of numbers in modular arithmetic.

If $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\mathrm{c}$, then there exists integers m and n such that $a \times m+b \times m=c$. We find these numbers by running Euclids Algorithm backwards.

Take each of the equations for division with remainder and solve them for the reaminder.
$3=79-4(19)$
$1=1(19)-6(3)$
$0=3-3(1)$
Substitute 3=79-4(19)
$1=1(19)-6(79-4(19))$
$1=1(19)-6(79)+24(19)$
$1=25(19)-6(79)$
What is $19^{-1}(\bmod 79)=25(\bmod 79)$
reducing this equation $\bmod 791=25(19)(\bmod 79)$

Compute $7^{-1}(\bmod 26)$
Compute gcd $(26,7)$
$26=3(7)+5==>5=26-3(7)$
$7=1(5)+2==>2=7-1(5)$
$5=2(2)+1==>1=5-2(2)$
$2=1(2)+0$
$==>1=5-2(2)$
$=5-2(7-1(5))$
$=5-2(7)+2(5)$
$=3(5)-2(7)$
$=-2(7)+3(26-3(7))$
$1=3(26)-11(7)$
reduce mod26
$1=-11(7)(\bmod 26)$
so... $7^{-1}=-11=15(\bmod 26)$

In modular arithmetic we refer to each of the possible remainders $0,1,2$, $3 . . . \mathrm{m}-1$ where m is our modulus as a residue $(\bmod \mathrm{m})$
If you have a collection of things we can add subtract and multiply (like residues) we acall this a ring. Ex:

- integers
- fractions
- real numbers
- polynomials

