
Class Notes 02/14/2018

Jacob Nolen

February 27, 2018

1



A perfect secrecy for a cryptosystem
P(the message was P)= P(the message was P | cipher was C)

Alice and Bob send the messages "Yes", "No", and "Maybe"
Frequency of messages: Yes- 5

10 , No- 3
10 , Maybe- 2

10
Use a cryptosystem with 3 keys k1, k2, k3

Table 1: Encryption:
k1 k2 k3

Yes a b c
No b c d

Maybe c d a

On any given day they chose one of the keys at random. Each key is used
with probability 1

3 . Suppose Eve captures the ciphertext "c" and wants to use
this to try to decrypt the message. She wants to know if the message was "Yes".
P(message is "yes")= 1

2
P(message is "yes" | cipher text is "C")

P(message "yes" and ciphertext is "C")
P(ciphertext is "C") =

1
2 × 1

3
( 5

10 × 1
3 )+( 3

10 × 1
3 )+( 2

10 × 1
3 ) = 1

2

So Eve learned nothing from capturing the ciphertext

Eve Captures "B"
P(message is "yes" | cipher text is "b")

P(message "yes" and ciphertext is "C")
P(ciphertext is "C") =

1
2 × 1

3
( 5

10 × 1
3 )+( 3

10 × 1
3 )+0 = 5

8

Since 5
8 is greater than the original 1

2 probability, she can give a more accu-
rate guess. The system does not have perfect secrecy.
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Theorem: The one-time-pad has perfect secrecy.

Disadvatages:

• Really long and hard to remember keys

• Can only use the key one time

• No way to transmit keys

• Impractical for actual use

Tools for elementary number theory:

How do we compute GCDs?
gcd(6,10) = 2
Factor the numbers and take all the factors they have in common.

Problem: Factoring big numbers is hard so we use Euclids Algorithm for
GCDs:
If you want to find the GCD of a,b use division with remainder. Divide a by b.
m is the quotient with Remainder r. This is equivalent to a = b × m + r.

If r is the remainder when a is divided by b, then gcd(a,b) = gcd(b,r)

Repeat this over and over until we get a remainder of c that the last value
of r is the gcd.

GCD(79,19)
4

19
)

79
76
3

79 = 19 × 4 + 3

GCD(19,3)
6

3
)

19
18
1
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19 = 3 × 6 + 1

GCD(3,1)
3

1
)

3
3
0

3 = 1 × 3 + 0

SO...the GCD(79,19) = 1

Factoring method runs in the O(a + b) while Euclids algorithm runs in time
O(log a + log b).

Extended Euclids Algorithm lets us compute inverses of numbers in modular
arithmetic.

If GCD(a,b)=c, then there exists integers m and n such that a×m+b×m = c.
We find these numbers by running Euclids Algorithm backwards.

Take each of the equations for division with remainder and solve them for
the reaminder.

3 = 79 - 4(19)
1 = 1(19) - 6(3)
0 = 3 - 3(1)

Substitute 3=79-4(19)
1 = 1(19)-6(79-4(19))
1 = 1(19)-6(79) + 24(19)
1 = 25(19) - 6(79)
What is 19−1(mod 79) = 25(mod 79)
reducing this equation mod79 1 = 25(19)(mod79)
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Compute 7−1(mod26)
Compute gcd(26,7)
26 = 3(7) + 5 ==> 5 = 26 - 3(7)
7 = 1(5) + 2 ==> 2 = 7 - 1(5)
5 = 2(2) + 1 ==> 1 = 5 - 2(2)
2 = 1(2) + 0

==> 1 = 5 - 2(2)
= 5 - 2(7 - 1(5))
= 5 - 2(7) + 2(5)
= 3(5) - 2(7)
= -2(7) + 3(26-3(7))
1 = 3(26) - 11(7)
reduce mod26
1 = -11(7)(mod26)
so... 7−1 = -11 = 15(mod26)

In modular arithmetic we refer to each of the possible remainders 0, 1, 2,
3...m-1 where m is our modulus as a residue (mod m)
If you have a collection of things we can add subtract and multiply (like residues)
we acall this a ring. Ex:

• integers

• fractions

• real numbers

• polynomials
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