MATH 314 Spring 2018 - Class Notes

02/12/18
Scribe: Teerra Thomas
Summary: This class covered know pt attack on Hill Cipher, What the One Time Pad is and perfect secrecy,and conditional probability

Notes:

Suppose Eve Captures the CT: LTPVPIZWUMSNTY

- Known pt attack on Hill Cipher:
- She learns the first 6 letters correspond to "linear"
- She also knows that the block length is $m=2$

$$
\begin{gathered}
{\left[\begin{array}{ll}
l & i
\end{array}\right]\left[\begin{array}{ll}
n & e
\end{array}\right]\left[\begin{array}{ll}
a & r
\end{array}\right]=\left[\begin{array}{ll}
11 & 8
\end{array}\right]\left[\begin{array}{ll}
13 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 17
\end{array}\right]} \\
{\left[\begin{array}{ll}
L & T
\end{array}\right]\left[\begin{array}{ll}
P & V
\end{array}\right]\left[\begin{array}{ll}
P & I
\end{array}\right]=\left[\begin{array}{ll}
11 & 19
\end{array}\right]\left[\begin{array}{ll}
13 & 21
\end{array}\right]\left[\begin{array}{ll}
15 & 8
\end{array}\right]}
\end{gathered}
$$

We then get these three equations:

1. $(11,8) \mathrm{K}=(11,19)$
2. $(13,4) \mathrm{K}=(15,21)$
3. $(0,17) \mathrm{K}=(15,8)$

Use these to use a matrix equation!
Using the first two equations we get:

$$
\left[\begin{array}{ll}
11 & 8 \\
13 & 4
\end{array}\right] K=\left[\begin{array}{ll}
11 & 19 \\
15 & 21
\end{array}\right]
$$

We'd like to solve this equation fork
So "divide" both sides by:

$$
\left[\begin{array}{ll}
11 & 8 \\
13 & 4
\end{array}\right]
$$

To do this we would multiply by the inverse matrix:

$$
\left[\begin{array}{ll}
11 & 8 \\
13 & 4
\end{array}\right]^{-1}=(44-104)^{-1}\left[\begin{array}{cc}
4 & 18 \\
13 & 11
\end{array}\right]
$$

But this det is not invertible and doesn't have an inverse!
Try again with equations $1 \& 3$

$$
\begin{gathered}
{\left[\begin{array}{cc}
11 & 8 \\
0 & 17
\end{array}\right] K=\left[\begin{array}{cc}
11 & 19 \\
15 & 8
\end{array}\right]} \\
{\left[\begin{array}{cc}
11 & 8 \\
0 & 17
\end{array}\right]^{-1}=(187-0)^{-1}\left[\begin{array}{cc}
17 & 18 \\
0 & 11
\end{array}\right]} \\
187 \equiv 5 \quad(\bmod 26) \\
5^{-1} \equiv 21 \quad(\bmod 26) \\
{\left[\begin{array}{cc}
11 & 8 \\
0 & 17
\end{array}\right]^{-1} \equiv 21\left[\begin{array}{cc}
17 & 18 \\
0 & 11
\end{array}\right] \equiv\left[\begin{array}{cc}
19 & 14 \\
0 & 23
\end{array}\right] \quad(\bmod 26)}
\end{gathered}
$$

We can use this to solve for K by multiplying the first equation by this matrix on the left:

$$
K \equiv\left[\begin{array}{cc}
19 & 14 \\
0 & 23
\end{array}\right]\left[\begin{array}{cc}
11 & 19 \\
15 & 8
\end{array}\right] \equiv\left[\begin{array}{ll}
3 & 5 \\
7 & 2
\end{array}\right] \quad(\bmod 26)
$$

One Time Pad:

- Encryption is like the vignere cipher except the key has the same length as the message, is a random string of characters and the key is only used one time

Eve intercepts the message:
$(S, B, Y)=(18,1,24)$

- Could this be the encryption of "cat"? Sure, if the key was $(16,1,5)=(\mathrm{Q}, \mathrm{B}, \mathrm{F})$
- No matter how long of a message Eve intercepts she will never learn anything about the pt from the CT

This idea of an unbreakable cryptosystem has a mathamathical definition called: "perfect secrecy" To define this we need: conditional probability
$P(A)=$ probability that " A " happens
$\mathrm{P}(\mathrm{a}$ coin flipped is heads $)=1 / 2$
$P(A \mid B)=$ Probability that A happens if we know B
$P((\mathrm{~A}$ coin is heads $) \mid($ it is 10 AM$))=1 / 2$
$P(A \mid B)=\mathrm{P}(\mathrm{A}$ and B$) / \mathrm{P}(\mathrm{B})$
Example: Suppose you are a weather forecaster and you compare the weather in the morning to the afternoon in Towson

- SEE TABLE 1

Table 1: morning
$\left\|\begin{array}{ll\|l\|}\text { Sunny } & \text { Rainy } & \text { Snowy } \\ \text { Sunny } & 1 / 5 & 1 / 10 \\ \text { Rainy } & 1 / 10 & 1 / 5 \\ \text { Rnowy } & 0 & 1 / 10 \\ \text { Sn } & 1 / 10 & 1 / 5\end{array}\right\|$

Table 2:

	K1	K2	K3
Yes	a	b	c
No	b	c	d

If it was rainy this morning what is the probability that it is sunny this afternoon?
$\mathrm{P}($ Today is Sunny in afternoon $)=(1 / 5)+(1 / 10)=(3 / 10)$

$$
\begin{aligned}
P((\text { Sunny Afternoon }) \mid(\text { Rainy this Morning })) & =\frac{P(\text { Sunny Afternoon and rainy morning })}{P(\text { rainy morning })} \\
& =\frac{(1 / 10)}{((1 / 10)+(1 / 5)+(1 / 10))}=\frac{1}{4}
\end{aligned}
$$

A cryptosystem has "perfect secrecy" if:

- for any key that Alice and Bob use and any plaintext P and ciphertext C
$\mathrm{P}(\mathrm{pt}$ of message was p$)=P((\mathrm{pt}$ was p$) \mid(\mathrm{CT}$ was C$)$
Example:Suppose Alice and Bob only want to send: Yes or No
- SEE TABLE 2

Eve learns through frequency analysis they send "yes" $(2 / 3)$ of the time and "no" $(1 / 3)$ $P($ message is "Yes" $)=(2 / 3) \neq P(($ message is yes $) \mid \mathrm{CT}$ is D$)$ Therefore, system does not have perfect secrecy

