MATH 314 Spring 2018 - Class Notes

2/1/2018
Scribe: Muhammad Harris
Summary: Today some basic and earlier cyphers were introduced, namely, the Caesar Cypher and the Affine Cypher. The method of encrypting a plaintext using these cyphers as well as attacking them in various manners is covered as well.

To break a crypto by conducting Crypt analysis, use Kerchoff's Principle, which states :

- When analyzing the security of a cryptosystem, you should always assume the attacker knows everything about the system except the key.
- The security of a system rests entirely on the diffuculty of figuring out the key.

The following are different appraoches to attacking cyphers:

- Cyphertext Only attack : Eve only has access to several differnet encryped messages. Goal is to decrypt the messages or better to obtain the key.
- Know Plaintext attack: Eve knows at least one plaintext and its corresponding cyphertext. She doesn't know the key, just original message and crypted message.
- Chosen Plaintext Attack : Eve temporarily has access to the encryption machine. She can encrypt any mesage she wants and obtain the ciphertext. Goal is to recover key.
- Chosen Ciphertext Attack: Eve has access to the decryption machine and can decrypt any ciphertext she wants. Goal is to recover the key.

Attacking the Caesar Cypher

- Cyphertext Only : Brute force; Frequency record of letters/chars in crypted message (frequency analysis)
- Known Plaintext Attack : Suppose Eve learns that the plaintext letter 'c' encrypts to the ciphertext 'T' $\mathrm{C}->2 \mathrm{E}(2)=2+\mathrm{k}(\bmod 26)$ 'T' -> $20 \equiv 20$ So $\mathrm{k}=18(\bmod 26)$
- Chosen Plaintext Attack : Eve picks 'A' and encrypts it.
$\mathrm{E}(0) \equiv 0+\mathrm{k}(\bmod 26)$
$\equiv k(\bmod 26)$
Eve can recover the key immediately.
- Chosen Ciphertext : Eve picks any letter and performs a known plaintext attack.

Note : Modular arithmetic works with addition, subtraction, and multiplication (and sometimes division).

Affine Cipher

Encryption
Key: 2 Number α, β
Function: $\mathrm{E}(\mathrm{x})=\alpha x+\beta(\bmod 26)$
Example:
Encrypt "hi" $(7,8)$ using:
$\alpha=9$
$\beta=3$
$\mathrm{E}(7) \equiv 9 * 7+3 \bmod (26)$
$\equiv 66(\bmod 26)$
$\equiv 14(\bmod 26)$
$={ }^{\prime}{ }^{\prime}$
$\mathrm{E}(8) \equiv 9 * 8+3 \bmod (26)$
$\equiv 75(\bmod 26)$
$\equiv 23(\bmod 26)$
$={ }^{\prime} \mathrm{x}^{\prime}$
Using the Affine Cipher, Plaintext 'hi' -> Ciphertext 'ox'.
Decryption
We need a decryption function...
$\mathrm{E}(\mathrm{x}) \equiv(\alpha x)+\beta(\bmod 26)$
$\mathrm{Y} \equiv(\alpha x)+\beta(\bmod 26)^{*}$ Need to solve for x here.

$$
1 . \mathrm{Y}-\beta \equiv \alpha x(\bmod 26)
$$

To remove the alpha and isolate the ' x ' to one side, we need to find an α^{-1} such that $\alpha * \alpha^{-1} \equiv 1(\bmod 26)$.
Then we call α^{-1} the inverse of α modulo m . In this case we say that α is invertible.
*Note : Fractions are never allowed when performing modular arithmetic.

Theorem : α is invertible modulo m if $\operatorname{gcd}(\alpha, \mathrm{m})=1$.

Decryption Function: $\mathrm{D}(\mathrm{y})=\alpha^{-1} *(\mathrm{y}-\beta)(\bmod 26)$

$$
\begin{aligned}
& \mathrm{E}(\mathrm{x})=9 \mathrm{x}+3 \\
& \mathrm{D}(\mathrm{y})=\alpha^{-1} *(\mathrm{y}-\beta)(\bmod 26) \\
& \equiv 3(\mathrm{y}-3)(\bmod 26) \\
& \equiv 3 \mathrm{y}-9(\bmod 26) \\
& \equiv 3 \mathrm{y}+17(\bmod 26)
\end{aligned}
$$

Decrypting 'ox'
$\mathrm{D}(14) \equiv 3 * 14+17(\bmod 26)$
$\equiv 59(\bmod 26)$
$\equiv 7(\bmod 26)->{ }^{\prime} h '$
$\mathrm{D}(23) \equiv 3 * 23+17(\bmod 26)$
$\equiv 69+17(\bmod 26)$
$\equiv 86(\bmod 26)$
$\equiv 8 \bmod (26)$
-> 'i'

How many keys are their for affine cipher?
$0<=\beta<=2526$ Possibilities
$\alpha=1,3,5,7,9,11,13,17,19,21,23,2512$ Possibilities

Attacking the Affine Cipher

- Ciphertext Only Attack: Brute force or Frequency Analysis
- Known Plaintext Attack: Need 2 letters

Suppose Eve learns that

```
'k' -> y
'd' -> 'f'
\alpha*10+\beta\equiv24(mod 26)
\alpha*3+\beta\equiv5(mod 26)
Subtracting the two equations above yields :
=7\alpha\equiv19(mod26)
15*7*\alpha\equiv15*19(mod 26)
\alpha\equiv25(mod 26)
25*3+\beta\equiv5(mod26)
22+\beta\equiv5(mod26)
\beta\equiv-17(mod26)
\beta\equiv9(mod26)
```

