MATH 314 - Class Notes

5/2/2017

Scribe: Ma. Bettina Bienvenida

Summary: This class we discussed factoring large primes using the factoring theorem and Dixon's Factoring Algorithm

Notes:

Recall: Using <u>trial division</u> to factor a large prime $n \approx 10^{100}$ will take around $\sqrt{n} \approx 10^{50}$ steps. This is still way to many...

<u>Theorem:</u> (aka the 'factoring trick')

If $x \neq \pm y \pmod{n}$ and $x^2 \equiv y^2$ then n is composite and $d = gcd(x - y, n), d \neq 1, n$, is a non trivial factor of n.

Naive way of using our factoring trick:

- pick $x \pmod{n}$ randomly
- square it x^2 and reduce mod n
- if this is already a square, we win!

What is the probability of this happening? In other words, what is the probability that $x^2 \pmod{n}$ is a square?

- about \sqrt{n} numbers are square...
- therefore the probability is $\frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$

On average, we would have to try \sqrt{n} times before we find one (this is not any faster than trial division...)

Example: Factor n = 77

- $9^2 \equiv 81 \equiv 4 \pmod{77}$
- $9^2 \equiv 2^2 \pmod{77}$
- Then $d = \gcd(9 2, 77) = 7$
- 7 is a factor of 7.

Dixon's Factoring Algorithm

General idea:

- pick x randomly
- compute $x^2 \pmod{n}$
- try and factor $x^2 \pmod{n}$ into small prime factors (2, 3, 5, ...)
- only keep $x^2 \pmod{n}$ if all prime factors are small (less than $B \approx e^{\sqrt{hn}}$)
- repeat this several times until we have lots of x_i^2 all have small prime factors
- piece them together to make a square.

Steps to factor(n):

- 1. pick $x_i \in (\sqrt{n}, n-1)$ randomly
- 2. compute $y_i = x_i^2 \%$ n
- 3. use *trial division* to factor y_i into primes of size at most B.
- 4. If it only has factors at most B, write down the powers of the primes dividing y_i , into a table (matrix) where each column n corresponds to a prime less than B.
 - put the number of times p divides into y_i into the entry in column p.
- 5. Repeat this until the matrix has more rows than columns.
- 6. By *linear algebra*, there is some combination of rows that we can add together so that the sum has all even entries
 - Lets suppose these rows correspond to $y_{i_1}, y_{i_2}, y_{i_3}...y_{i_k}$ then $y_{i_1} \times y_{i_2} \times y_{i_3} \times ... \times y_{i_k}$ is only divisible by primes to an even power.
 - So $y_{i_1} \times y_{i_2} \times y_{i_3} \times \dots \times y_{i_k} = s^2$
 - but $y_{i_1} \neq x_{i_1}$ and $y_{i_2}^2 \equiv x_{i_2}^2$

Example: Factor n = 629, B = 12 (bound)

- Pick x_i put $y_i = x_i^2 \%$ n in table
- $\mathbf{x} = \text{changes}, \mathbf{y} = x_i^2 \% 629$
- factor(y)

x_i	2	3	5	7	11
59	4	1	0	1	0
73	0	3	0	0	5
80	1	0	1	0	1
87	0	1	0	1	0
94	1	1	1	0	0
113	1	0	1	0	1

• We want an even number summations each column

x	2	3	5	7	11
73, 80, 94	2	4	2	0	2

- $73^2 \equiv 3^3 \times 11 \pmod{n}$
- $80^2 \equiv 2 \times 5 \times 11 \pmod{n}$
- $94^2 \equiv 2 \times 3 \times 5 \pmod{n}$
- $(70 \times 80 \times 94)^2 = 2^2 \times 3^4 \times 5^2 \times 11^2 = (2 \times 3^2 \times 5 \times 11)^2 \pmod{n}$

Check using sage:

- $x = 70 \times 80 \times 94$ and $y = 2 \times 3^2 \times 5 \times 11$
- $x \pmod{629} = 472 \text{ and } y \pmod{629} = 361$
- $x^2 \pmod{629} = 118$ and $y^2 \pmod{629} = 118 \pmod{92}$
- gcd(x y, 629) = 37
- 629/37 = 17 and $37 \times 17 = 629$
- we successfully factored 629!!