MATH 314 - Class Notes

5/2/2017
Scribe: Ma. Bettina Bienvenida
Summary: This class we discussed factoring large primes using the factoring theorem and Dixon's Factoring Algorithm

Notes:

Recall: Using trial division to factor a large prime $n \approx 10^{100}$ will take around $\sqrt{n} \approx 10^{50}$ steps. This is still way to many...

Theorem: (aka the 'factoring trick')

$$
\text { If } x \neq \pm y(\bmod \mathrm{n}) \text { and } x^{2} \equiv y^{2}
$$

then n is composite and $d=g c d(x-y, n), d \neq 1, n$, is a non trivial factor of n .
Naive way of using our factoring trick:

- pick $x(\bmod \mathrm{n})$ randomly
- square it x^{2} and reduce mod n
- if this is already a square, we win!

What is the probability of this happening? In other words, what is the probability that $x^{2}(\bmod$ n) is a square?

- about \sqrt{n} numbers are square...
- therefore the probability is $\frac{\sqrt{n}}{n}=\frac{1}{\sqrt{n}}$

On average, we would have to try \sqrt{n} times before we find one (this is not any faster than trial division...)

Example: Factor n $=77$

- $9^{2} \equiv 81 \equiv 4(\bmod 77)$
- $9^{2} \equiv 2^{2}(\bmod 77)$
- Then $d=\operatorname{gcd}(9-2,77)=7$
- 7 is a factor of 7 .

Dixon's Factoring Algorithm

General idea:

- pick x randomly
- compute $x^{2}(\bmod n)$
- try and factor $x^{2}(\bmod \mathrm{n})$ into small prime factors $(2,3,5, \ldots)$
- only keep $x^{2}(\bmod n)$ if all prime factors are small (less than $B \approx e^{\sqrt{h n}}$)
- repeat this several times until we have lots of x_{i}^{2} all have small prime factors
- piece them together to make a square.

Steps to factor(n):

1. pick $x_{i} \in(\sqrt{n}, n-1)$ randomly
2. compute $y_{i}=x_{i}^{2} \% \mathrm{n}$
3. use trial division to factor y_{i} into primes of size at most B .
4. If it only has factors at most B , write down the powers of the primes dividing y_{i}, into a table (matrix) where each column n corresponds to a prime less than B.

- put the number of times p divides into y_{i} into the entry in column p .

5. Repeat this until the matrix has more rows than columns.
6. By linear algebra, there is some combination of rows that we can add together so that the sum has all even entries

- Lets suppose these rows correspond to $y_{i_{1}}, y_{i_{2}}, y_{i_{3}} \ldots y_{i_{k}}$ then $y_{i_{1}} \times y_{i_{2}} \times y_{i_{3}} \times \ldots \times y_{i_{k}}$ is only divisible by primes to an even power.
- So $y_{i_{1}} \times y_{i_{2}} \times y_{i_{3}} \times \ldots \times y_{i_{k}}=s^{2}$
- but $y_{i_{1}} \neq x_{i_{1}}$ and $y_{i_{2}}^{2} \equiv x_{i_{2}}^{2}$

Example: Factor $\mathrm{n}=629, \mathrm{~B}=12$ (bound)

- Pick x_{i} put $y_{i}=x_{i}^{2} \% \mathrm{n}$ in table
- $\mathrm{x}=$ changes, $\mathrm{y}=x_{i}^{2} \% 629$
- factor(y)

x_{i}	2	3	5	7	11
59	4	1	0	1	0
73	0	3	0	0	5
80	1	0	1	0	1
87	0	1	0	1	0
94	1	1	1	0	0
113	1	0	1	0	1

- We want an even number summations each column

x	2	3	5	7	11
$73,80,94$	2	4	2	0	2

- $73^{2} \equiv 3^{3} \times 11(\bmod n)$
- $80^{2} \equiv 2 \times 5 \times 11(\bmod n)$
- $94^{2} \equiv 2 \times 3 \times 5(\bmod \mathrm{n})$
- $(70 \times 80 \times 94)^{2}=2^{2} \times 3^{4} \times 5^{2} \times 11^{2}=\left(2 \times 3^{2} \times 5 \times 11\right)^{2}(\bmod n)$

Check using sage:

- $x=70 \times 80 \times 94$ and $y=2 \times 3^{2} \times 5 \times 11$
- $x(\bmod 629)=472$ and $y(\bmod 629)=361$
- $x^{2}(\bmod 629)=118$ and $y^{2}(\bmod 629)=118($ yay!!! $)$
- $\operatorname{gcd}(x-y, 629)=37$
- $629 / 37=17$ and $37 \times 17=629$
- we successfully factored $629!$!

