
2DES: A meet-in-the-middle attack has 260 bits of effective security. It is
possible to break the encryption using approximately 260 operations.

For modern computers, this is not a reliable form of encryption anymore so
the solution to fixing 2DES was 3DES. 3DES uses 3 steps of encryption instead
of 2 steps of encryption. For 3DES, you need to pick two keys k1 and k2. Then
the plaintext P is encrypted using the following function from DES:

Eki
(P) = C

And the ciphertext is decrypted using the following function:

Dki
(C) = P

To encrypt P:
C = Ek1(Dk2(Ek1(P)))

To decrypt C:
P = Dk1(Ek2(Dk1(P)))

For 3DES, a man-in-the-middle attack does not work because there are

256 ∗ 256 = 2112

effective bits of security. So, this attack is not plausible for modern attack.
3DES is still considered secure and gets used today, but is not recommended

for new applications.
How do we encrypt things that are larger than 64 bits? 1 Method would be

to break the plaintext into 64 bit chunks and encrypt each chunk separately.
Modes of Operation:
The method of breaking the plaintext into 64 bit chunks and encrypting each
block separately is called Electronic Code Blocking (ECB).
Another mode is Cipher Block Chaining (CBC): This is when the plaintext is
broken up into chunks

p1, p2, ..., pn

. Then, to encrypt: Fix c0 = all zeros or some random string of bits, then

cj = Ek(Pj ⊕ Cj−1)

To decrypt: Send c0 in plaintext and compute

Pj = Dk(Cj)⊕ Cj−1

Cipher Feedback (CFB): This mode of operations introduces 2 functions: head(X)
which return the first n bits of a string X (n depends of the encryption algorithm
that you are using; so for DES n=8 or for SDES n=4) and tail(X) which returns
the string of bits after the first n bits.

1

Ex (using DES):

head(101100001011) = 1011

tail(101100001011) = 00001011

For CFB, we will break our plaintext into chunks of length X = length(head(X)).
Fix an initial X0 of the same length as the block. Then compute:

Oi = head(Ek(Xi))

Ci = Pi ⊕Oi

Xi+1 = tail(Xi)||Ci

where || is the append operation. And to decrypt, we will compute

Pi = Ci ⊕Oi

Output Feedback (OFB): Pretty much the same setup as CFB. But,

Oi = head(Ek(Xi))

Xi+1 = tail(Xi)||Oi

Ci = Pi ⊕Oi

Some benefits of OFB is that there is no error propogation. Since Oi doesn’t
depend on the plaintext or the ciphertext it can be precomputed. Then the only
step for encryption is to compute

Pi ⊕Oi

This is also referred to as a stream cipher.
Counter (CTR): This is another stream cipher. First you initialize X0 then
compute

Ci = Pi ⊕ E(Xi)

Xi = Xi + 1(mod2blocksize)

Advanced Encryption Standard (AES): The NIST put a call out for proposals
for a new encryption standard. The system that the NIST chose was Rijndael.
AES is not a feistal system (to make encryption faster). This was designed to
be completely open so there are no backdoors hidden anywhere. Also designed
to be faster and more secure that the current encryption standard (DES).

An example of a simplified version of AES called SAES. This simplified ver-
sion of AES follows this pattern: Plaintext => Add round key => Round 1
(Substitute => Shift Rows => Mix Column => Add round key) => Round 2
(which consists of Round 1 not including the "mix columns step"). Taking a look
at what the "substitute" step does: SAES has 1-box which takes in 4-bits and

2

returns 4-bits. The four bits that it returns b0b1b2b3 are the coefficients of a de-
gree 3 polynomial in F16. The irreducible prime polynomial is: x4+x+1. So the
steps for the sbox are: compute (b0x3+b1x2+b2x+b0)−1 = c0x3+c1x2+c1x+c0.
Then, 

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

 ∗


C0
C1
C2
C3

 +


1
0
0
1

 =


d0
d1
d2
d3


And the output of the sbox is: d0d1d2d3.

3

Notes for 4/6/17

Kevin Shhultis

April 13, 2017

4

