Class Notes 4/4/17

Ross Jones

April 20, 2017

Summary: On this day we discussed the differences between DES and SDES encryption. We were also taught about the Differential Cryptanalysis of DES and the strengths of Double DES.

Class Notes:

Main differences in DES:

- DES has 64 bit blocks (12 in SDES) with 56 bit keys
- There is an initial permutaion of the plaintext before the first step (put the bits in a fixed order other than how they started out)
- L_{o} and R_{o} have 32 bits each
- 16 rounds of encrpytion

The DES Function Steps:

1. Expander function takes 32 bits $\rightarrow 48$ bits
2. Use the 56 bit master key to make 48 bit round keys
3. Then XOR $\mathrm{E}\left(R_{o}\right) \oplus\left(k_{i}\right)$
4. Break into 8 pieces (6 bits each) and feed pieces into 8 different S-boxes
5. Each S-box returns 4 bits then put pieces back together
6. XOR this with L_{1} and this becomes the new R_{i+1}

The DES Differential Cryptanalysis:
-The Differential Cryptanalysis is slower than brute force against DES with 16 rounds, but would have been faster had DES used only 15 rounds.
-To attack DES, brute force and we try all 2^{56} possible keys.
-In the early 90's, Electronic Frontier Foundation built a supercomputer that could do one DES brute force attack in 24 hours, today it is possible in 2-3 hours, making it insecure.
-To make DES more secure from today's computers without changing the widely used algorithm, a double encryption is used that requires much more computing power.

Double DES:

1. Pick 2 different 56 bit keys, k_{1}, k_{2}
2. DES uses the expander function $E_{k}(\mathrm{P})$
3. To perform 2DES, we encrypt plaintext P using $\mathrm{C}=E_{k 2}\left(\left(E_{k 1}(\mathrm{P})\right)\right.$

A few question that we ask ourselves about 2DES are
-Is this any different from doing DES with some other key?
-If we pick k_{1}, k_{2}, does there exist a key k_{3} such that
$E_{k 2}\left(\left(E_{k 1}(\mathrm{P})\right)=E_{k 3}(\mathrm{P}) *\right.$?
Note that * is true for Caesar, Affine, Vigenere, and Hill Ciphers but not for DES.

How to Attack 2DES:

-Brute force will not work because 2DES requires trying every possible pair of keys k_{1}, k_{2}.
-This means there are $2^{56} * 2^{56}=2^{112}$ possible pairs, which is too big for any supercomputer today
-2DES can be attacked using a meet-in-the-middle attack which work against any double encryption

Meet-in-the-middle Attack:
-Meet-in-the-middle is a known plaintext attack and must know two plaintexts P_{1}, P_{2} and their corresponding ciphertexts C_{1}, C_{2}
$C_{1}=E_{k 2}\left(E_{k 1}\left(P_{1}\right)\right)$
$C_{2}=E_{k 2}\left(E_{k 1}\left(P_{1}\right)\right)$
Goal: Find k_{1} and k_{2}
-Now take the decryption function of both equations using $k_{2}\left(D_{k 2}\right)$
$\left.D_{k 2}(C)=D_{k 2}\left(E_{k 2}\left(E_{k 1} P\right)\right)\right)$
$D_{k 2}(C)=E_{k 1}(P)$
-Then create 2 tables with 2^{56} rows containing every possible key
-In the first table, solve for every possible value of $D_{k 2}(C)$
-In the second, solve for every possible value of $E_{k 1(P)}$
-Look for rows that appear in both tables
What is the probability that 2 rows agree? $\left(\frac{1}{2}\right)^{64}$ or $\frac{1}{2^{64}}$
-Since there are 2^{112} pairs of rows, we expect $2^{112^{264}} * \frac{1}{2^{64}}=2^{48}$ different matching rows.
-Repeat this again using P_{2} and C_{2}
-The probability that k_{1} and k_{2} match in both sets of tables is $\frac{1}{2^{16}}$ and should only happen once corresponding to the actual values of k_{1} and k_{2}

How many steps is this?

- 2^{56} rows in each table
- 2^{2} tables
- Search through these tables for matches are $4\left(2^{2}\right)$ times additional work
- This adds to 2^{60} operations which is still reasonable for a supercomputer today

