MATH 314 - Class Notes

4/25/2017
Scribe: Timothy Quartey
Summary: Today we did a review of Fermat's Primality Test, as well as specifically delving into Miller-Rabin's Test

Notes:

- Miller Rabin primality test is a primality test hence the name. It is an algorithm which determines whether a given number is prime.
- The following steps detail how to computer the Fermat primality test in relatively short order.
- Check if n is prime
- If n is prime, then we compute
- Pick a at random, $1<a<p-1$
- We then compute $a^{n}-1(\bmod n)$
- If this is 1 , then n is "probably prime!"
- If not then n is "composite"
- It is said that Carmichael numbers pass the Fermat Primality test for all numbers that are said to be not found composite.
- The smallest Carmichael number is 561 .
- The following steps detail the steps needed to complete the Miller-Rabin Primality Test
- Step 1
- Check to see if n is prime/odd number
- $1<a<n-1$ Pick a random number for a
- Step 2
- Write $n-1=2^{k} m$, where m is odd
- Example
- If $\mathrm{n}=13$, and $\mathrm{a}=2$
- $13-1=12$
- $12=2^{k} m$
- Proceed to break down a to its highest power, which would be 2^{2}
- $12=2^{2} * 3$
- $b_{0}=2^{3}(\bmod 13)$
- $b_{1}=\left(b_{1}-1\right)^{2}=\left(b_{0}\right)^{2}=64=-1(\bmod 13)$
- which means 13 is "probably prime".
- Step 3
- $b_{0}=+-1(\bmod n)$ return "probably prime"
- Step 4
- for $($ int $i=1 ; i<k-1 ; i++)$
- $b_{i}=\left(b_{i}-1\right)^{2}(\bmod n)$
- If $b_{i}=-1(\bmod n)$ return "probably prime"
- If $b_{i}=-1(\bmod n)$ return "composite"
- Step 5
- IF we never got +-1
- If $b_{k}-1$ not equal +-1 return "composite"
- Example 2, suppose $n=121$, and $a=3$
- $n-1=120=2^{3} * 15$
- Step 1 compute $3^{1} 5 \bmod n=1(\bmod 121)$

Nice things:

1. No Carmichael-like numbers for Miller Rabin
2. There exist n , a n composite, but it passes Miller-Rabin base a strong pseudo primes.
3. If n is composite then at least $3 / 4$ of values of a prove n is composite for Miller-Rabin.

Important Tidbits:

1. If you try Miller-Rabin 10 times you probably get prime every time, then the probability that n is composite is at most $(1 / 4)^{1} 0=(1 / 1,000,000)$
2. It helps if your m is odd. It allows for a seamless transition for the Miller-Rabin test.
