MATH 314 - Class Notes

3/7/2017

Scribe: Jacob Lee

Summary: This set of notes will cover Finite Fields, Modular Arithmetic with Polynomials, and Quadratic Residues.

Notes:

1 Some useful facts to start

- Every prime has at least two primitive roots
- If g is a primitive root (mod p) then: $g^n \equiv 1$ **IFF** n is a multiple of p 1
- If $g^i \equiv g^3 \pmod{p}$, then $i \equiv j \pmod{p-1}$

2 Finite Fields

If p is prime, then \mathbb{F}_p is the Finite Field with p elements. (This is the integers modulo p)

If n is **composite**, then \mathbb{F}_n is **not** the integers modulo n

Example: n = 4

x	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Here we can see that 2 (row 2 containing values 0, 2, 0, 2) does not have an inverse modulo 4, so n = 4 is **not** a field.

3 Polynomials with Coefficients in $\mathbb{F}_2(\mathbb{F}_2[\mathbf{x}])$

We can do addition, subtraction, and multiplication pretty simply, but division is slightly harder so we'll start with that.

Example: Division with a remainder: $x^2 + x + 1 \overline{)x^3 + 0x^2 + x + 1}$

After doing the some polynomial long division we get: x+1 R xThus, we can say that $f(x) = x^2 + x + 1$ is "smaller" than $g(x) = x^3 + 0x^2 + x + 1$ if the degree(highest power of x) in f(x) is less than the degree of g(x).

4 Modular Arithmetic with Polynomials

Say that $f(\mathbf{x}) \equiv g(\mathbf{x}) \pmod{m(\mathbf{x})}$.

If the remainder when dividing f(x) by m(x) is the same as the remaindr when dividing g(x) by m(x) then...

Using the example of polynomial division from the previous section...

 $x^{3} + x + 1 \equiv x (modx^{2} + x + 1)$ in $\mathbb{F}_{2}[x]$

5 Comparisons

 $Z \operatorname{ring} \mathbb{F}_2[x]_{m(x)} \operatorname{modulo}$

 $Z \mod_{p-prime} P$ Field $\mathbb{F}_p[x]_{q(x)}$ modulo, where g(x) is irreducable.

Irreducable meaning: if not divisable with remainder 0 by any polynomial with degree smaller than the g(x) besides 1

Polynomials in $\mathbb{F}_2[x]$ of Small Degree

Degree = 0: 0, 1 Degree = 1: x + 0, x, x + 1Degree = 2: x^2 , $x^2 + 1$, $x^2 + x + 1$

Claim: $x^2 + x + 1$ is irreducable

Check: $x \overline{)x^2 + x + 1} = x^2 + 1 R 1$

Check: $x + 1) \overline{x^2 + x + 1} = x R 1$

This tells us that $\mathbb{F}_2[x] \pmod{x^2 + x + 1}$ should be a field!

So possible residues in this field are 0, 1, x, x + 1

SO... all polynomials in $\mathbb{F}_2[x]$ of degree smaller than $x^2 + x + 1$

6 Polynomial Addition and Multiplication

Addtion

+	0	1	x	x + 1
0	0	1	x	x + 1
1	1	0	x + 1	x
x	x	x + 1	0	1
x + 1	x + 1	x	1	0

Multiplication

*	0	1	x	x + 1
0	0	0	0	0
1	0	1	x	x + 1
x	0	1	x + 1	1
x + 1	0	x + 1	1	x

This has 4 elements so this \mathbb{F}_4

Working modulo $x^2 + x + 1$ produced \mathbb{F}_4

If we wanted \mathbb{F}_{2^n} , we can work with polynomials in $\mathbb{F}_2[x]$ modulo q(x); where q(x) is reducable of degree n.

 $x^3 + x + 1$ is irreducable so $\mathbb{F}_8[x]$ is $\mathbb{F}_2 \pmod{x^3 + x + 1}$

In general \mathbb{F}_{p^n} is $\mathbb{F}_p[x] \pmod{*\text{some irreducable polynomial of degree } n^*)}$

7 Quadratic Residues

Say a is a quadratic residue (mod p) if $x \equiv a \pmod{p}$ has a solution.

Say it's a quadratic non-residue if it does not.

Example: p = 7

a	$a^2(mod7)$
1	1
2	4
3	2
4	2
5	4
6	1

Here we can see that 1, 4, 2 are quadratic residues and 3, 5, 6 are quadratic non-residues.

If p is an **odd** then there are $\frac{(p-1)}{2}$ quadratic residues as well as $\frac{(p-1)}{2}$ quadratic non-residues. If p is an odd prime then a is a quadratic residue.

If $a^{(p-1)/2} \equiv 1 \pmod{p}$ we get a residue If $a^{(p-1)/2} \equiv -1 \pmod{p}$ we get a non-residue