MATH 314 - Class Notes

3/7/2017
Scribe: Jacob Lee
Summary: This set of notes will cover Finite Fields, Modular Arithmetic with Polynomials, and Quadratic Residues.

Notes:

1 Some useful facts to start

- Every prime has at least two primitive roots
- If g is a primitive root $(\bmod p)$ then: $g^{n} \equiv 1$ IFF n is a multiple of $p-1$
- If $g^{i} \equiv g^{3}(\bmod p)$, then $i \equiv j(\bmod p-1)$

2 Finite Fields

If p is prime, then \mathbb{F}_{p} is the Finite Field with p elements. (This is the integers modulo p)
If n is composite, then \mathbb{F}_{n} is not the integers modulo n
Example: $n=4$

x	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Here we can see that 2 (row $\mathbf{2}$ containing values $\mathbf{0}, \mathbf{2}, \mathbf{0}, \mathbf{2}$) does not have an inverse modulo 4 , so $n=4$ is not a field.

3 Polynomials with Coefficients in $\mathbb{F}_{2}\left(\mathbb{F}_{2}[\mathrm{x}]\right)$

We can do addition, subtraction, and mulitplication pretty simply, but division is slightly harder so we'll start with that.
Example: Division with a remainder: $x ^ { 2 } + x + 1 \longdiv { x ^ { 3 } + 0 x ^ { 2 } + x + 1 }$
After doing the some polynomial long division we get: $\mathrm{x}+1 \mathrm{R} \mathrm{x}$
Thus, we can say that $f(\mathrm{x})=x^{2}+x+1$ is "smaller" than $g(\mathrm{x})=x^{3}+0 x^{2}+x+1$ if the degree(highest power of x) in $f(\mathrm{x})$ is less than the degree of $g(\mathrm{x})$.

4 Modular Arithmetic with Polynomials

Say that $f(\mathrm{x}) \equiv g(\mathrm{x})(\bmod m(\mathrm{x}))$.
If the remainder when dividing $\mathrm{f}(\mathrm{x})$ by $\mathrm{m}(\mathrm{x})$ is the same as the remaindr when dividing $\mathrm{g}(\mathrm{x})$ by $m(\mathrm{x})$ then...
Using the example of polynomial division from the previous section...

$$
x^{3}+x+1 \equiv x\left(\bmod x^{2}+x+1\right) \text { in } \mathbb{F}_{2}[x]
$$

5 Comparisons

Z ring $\mathbb{F}_{2}[x]_{m(x)}$ modulo
$Z \bmod _{p-\text { prime }} P$ Field $\mathbb{F}_{p}[x]_{q(x)}$ modulo, where $g(x)$ is irreducable.
Irreducable meaning: if not divisable with remainder 0 by any polynomial with degree smaller than the $g(x)$ besides 1^{}

Polynomials in $\mathbb{F}_{2}[x]$ of Small Degree

Degree $=0$:
0,1
Degree $=1$:
$x+0, \quad x, \quad x+1$
Degree $=2$:

$$
x^{2}, \quad x^{2}+1, \quad x^{2}+x+1
$$

Claim: $x^{2}+x+1$ is irreducable
Check: $\quad x \longdiv { x ^ { 2 } + x + 1 } = x ^ { 2 } + 1 R 1$
Check: $\quad x + 1 \longdiv { x ^ { 2 } + x + 1 } = x$ R 1
This tells us that $\mathbb{F}_{2}[x]\left(\bmod x^{2}+x+1\right)$ should be a field!
So possible residues in this field are $0,1, x, x+1$
SO... all polynomials in $\mathbb{F}_{2}[x]$ of degree smaller than $x^{2}+x+1$

6 Polynomial Addition and Multiplication

Addtion

+	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

Multiplication

$*$	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	1	$x+1$	1
$x+1$	0	$x+1$	1	x

This has 4 elements so this \mathbb{F}_{4}
Working modulo $x^{2}+x+1$ produced \mathbb{F}_{4}
If we wanted $\mathbb{F}_{2^{n}}$, we can work with polynomials in $\mathbb{F}_{2}[x]$ modulo $q(x)$; where $q(x)$ is reducable of degree n.
$x^{3}+x+1$ is irreducable so $\mathbb{F}_{8}[x]$ is $\mathbb{F}_{2}\left(\bmod x^{3}+x+1\right)$
In general $\mathbb{F}_{p^{n}}$ is $\mathbb{F}_{p}[x]\left(\bmod *^{*}\right.$ some irreducable polynomial of degree $\left.n^{*}\right)$

7 Quadratic Residues

Say a is a quadratic residue $(\bmod p)$ if $x \equiv a(\bmod p)$ has a solution.

Say it's a quadratic non-residue if it does not.
Example: $p=7$

a	$a^{2}(\bmod 7)$
1	1
2	4
3	2
4	2
5	4
6	1

Here we can see that 1, 4, 2 are quadratic residues and 3,5,6 are quadratic non-residues.
If p is an odd then there are $\frac{(p-1)}{2}$ quadratic residues as well as $\frac{(p-1)}{2}$ quadratic non-residues.
If p is an odd prime then a is a quadratic residue.
If $a^{(p-1) / 2} \equiv 1(\bmod p)$ we get a residue
If $a^{(p-1) / 2} \equiv-1(\bmod p)$ we get a non-residue

