MATH 314-Class Notes

03/30/2017
Scribe: Cyrus Buckman
Summary: Today in class we covered attacking and encrypting DES.

0.1 Attacking DES

I. Chosen Plaintext attack.

Goal:Recover Key
Pick any plaintext $P=(L 0, R 0)$
2. Encrypt P using an Unknown Key K1,K2,K3

L0 R0
$L 1=R 0 — R 1=f(R 0, K 1) \oplus L 0$
$L 2=f(R 0, K 1) \oplus L 1-R 2=f(R 1, K 2) \oplus L 2$
$L 3=f(R 1, K 2) \oplus L 2-R 3=f(R 2, K 3) \oplus L 3$
Recall that $x \oplus y \oplus y=x$
Output is $L 3, R 3=f(L 3, K 3) \oplus f(R 0, K 1) \oplus L 0$ know L0,R0,L3,R3.
3.Encrypt a new plaintext $P *=(L 0 *, R 0 *)$ with $\mathrm{R} 0=\mathrm{R} 0^{*}$ and $L 0!=L 0 *$ Give us a new $\mathrm{L} 3^{*}$ and R3*
$R 3=f(L 3, K 3) \oplus f(R 0, K 1) \oplus L 0$
$R 3 *=f(L 3 *, K 3) \oplus f(R 0 *, K 1) \oplus L 0 *$
$R 3 \oplus R 3 *=f(L 3, K 3) \oplus f(L 3 *, K 3) \oplus L 0+L 0 *$
At this point we know $\mathrm{L} 0, \mathrm{~L} 0^{*} . \mathrm{R} 3, \mathrm{R} 3^{*}$ and the function F but we still dont know k3
$f(L 3, K 3) f(L 3 *, K 3)$
$E(L 3) \oplus K 3 \Rightarrow$ input (which splits) S 1 and S 2 to get an output
$E(L 3 *) \oplus K 3 \Rightarrow$ input* (which splits) S1 and S2 to get an output*.
Dont know input.
If we did then we could solve for K3.
$K 3=$ input $\oplus E(L 3)$
input \oplus input $^{*}=(E(L 3) \oplus K 3) \oplus(E(L 3 *) \oplus K 3)=E(L 3) \oplus E(L 3 *)$ (we know this)
Focus on the first 4 bits know $E(L 3) \oplus E(L 3 *) 16$ possible bits that could be set to S 1 (first 4 bits of input). Only 16 pairs of 4 bits that could be the first 4 bits of input and input* for a fixed $E(L 3) \oplus E(L 3 *)$ search over all 16 pairs see if the output of the S-boxes corresponds to the right value of the output

