Class Notes 2/16/17

David Rogers

March 8, 2017

Starting from where last class left off;
$\left(P\left(\right.\right.$ message $\left.\left.=^{\prime} Y E S^{\prime}\right) * P(k e y=K 2)\right) /\left(P(k e y=K 1) * P\left(\right.\right.$ message $\left.=^{\prime} N O^{\prime}\right)+$ $P($ Key $=K 2) * P\left(\right.$ message $\left.\left.=^{\prime} Y E S^{\prime}\right)\right)$

What we get from the tables mentioned last class is:
$((1 / 4) *(1 / 3)) /((1 / 3) *(3 / 4)+(1 / 4) *(1 / 3))=1 / 4$ so Eve didnt learn anything.

What if eve captures 7 instead?

Eve knows something then. A cryptosystem has perfect secrecy if for any ciphertext ' C ' and any message ' M ' P (message in ' M ' | Ciphertext ${ }^{\prime} \mathrm{C}^{\prime}$) = P (message is' M^{\prime})

DOWNSIDES: Alice and Bob have to share the key, they can only use it once .
Theorem: The one-time-pod has perfect secrecy
The next part is just showing different short cuts how to find the GCD of numbers much faster.

1. Compute $\operatorname{GCD}(6,9)=3$ 2. factor m, n take prime powers that divide both
$\operatorname{GCD}(12,30)=6$
$12=2 * 2 * 3$
$30=2 * 3 * 5$
so group the $2^{*} 3$ which both have in common and you have 6
2. This is the fast method: Euclids algorithm
$\operatorname{GCD}(\mathrm{M}, \mathrm{N})=\mathrm{d}$
d divides (m-n)
d divides $(\mathrm{m}-\mathrm{a}$ * n$)$

Use division with remainder
$\mathrm{n} / \mathrm{m}=\mathrm{a}$ with remainder r d still divides r
$\operatorname{GCD}(\mathrm{m}, \mathrm{n})=\operatorname{GCD}(\mathrm{n}, \mathrm{r})$
Ex. GCD $(1317,56)$
is simplified to $\operatorname{GCD}(56,29)$ which is obtained by dividing $56 / 1317$
This gives you remainer 29
Then divide $29 / 56$ which gives you remainder 27

So the $\operatorname{GCD}(29,27$
) You keep repeating this process until the divisor is 1 or cannot be simplified any further.

