You are attacking an SDES system (3 rounds) using differential cryptanalysis.
You encrypt the plaintext $\mathrm{P}=[0,0,0,0,1,1,1,1,1,0,1,1]$ and get the ciphertext $\mathrm{C}=[0,1,0,0,1,1,1,1,1,1,0,0]$. In Particular you have $\mathrm{L}_{3}=[0,1,0,0,1,1]$ and $\mathrm{R}_{3}=[1,1,1,1,0,0]$.

In order to attack the system, you also use several different values for a second plaintext, P^{*}. The values of the plaintext, along with the ciphertext and the corresponding values of the xor of the inputs to the sboxes, $\left(\mathrm{E}\left(\mathrm{L}_{3}\right) \oplus \mathrm{E}\left(\mathrm{L}_{3}^{*}\right)\right)$ and the outputs $\left(\left(\mathrm{R}_{3} \oplus \mathrm{R}_{3}{ }_{3}\right) \oplus\left(\mathrm{L}_{0} \oplus \mathrm{~L}^{*}{ }_{0}\right)\right)$ are given. Use this information to determine the value of K_{3}.

First alternate plaintext:

$\mathrm{P}^{*}=[1,0,0,1,1,0,1,1,1,0,1,1]$
$\left(\mathrm{E}\left(\mathrm{L}_{3}\right) \oplus \mathrm{E}\left(\mathrm{L}_{3}^{*}\right)\right)=[1,1,1,0,1,0,0,1]$
$\left(\left(\mathrm{R}_{3} \oplus \mathrm{R}_{3}{ }_{3}\right) \oplus\left(\mathrm{L}_{0} \oplus \mathrm{~L}^{*} 0\right)\right)=[1,0,0,1,0,1]$
Possible values of input to Sbox 1 (From L_{0}):

Possible values of input to Sbox 2 (From L_{0}):

```
Second alternate plaintext:
\(\mathrm{P}^{*}=[0,1,0,1,1,1,1,1,1,0,1,1]\)
\(\left(\mathrm{E}\left(\mathrm{L}_{3}\right) \oplus \mathrm{E}\left(\mathrm{L}_{3}^{*}\right)\right)=[1,0,0,0,0,0,1,1]\)
\(\left(\left(\mathrm{R}_{3} \oplus \mathrm{R}_{3}^{*}\right) \oplus\left(\mathrm{L}_{0} \oplus \mathrm{~L}^{*} 0\right)\right)=[0,1,1,0,1,1]\)
```

Possible values of input to Sbox 1 (From L_{0}):

Possible values of input to Sbox 2 (From L_{0}):

```
Third alternate plaintext:
\(\mathrm{P}^{*}=[0,1,1,0,1,1,1,1,1,0,1,1]\)
\(\left(\mathrm{E}\left(\mathrm{L}_{3}\right) \oplus \mathrm{E}\left(\mathrm{L}_{3}^{*}\right)\right)=[1,1,0,1,0,1,0,1]\)
\(\left(\left(\mathrm{R}_{3} \oplus \mathrm{R}_{3}^{*}\right) \oplus\left(\mathrm{L}_{0} \oplus \mathrm{~L}^{*} 0\right)\right)=[1,1,0,1,1,1]\)
```

Possible values of input to Sbox 1 (From L_{0}):

Possible values of input to Sbox 2 (From L_{0}):

Based on this info, we conclude that the input to the Sboxes when encrypting the original plaintext was: (Concatenate the only remaining values for the input to Sbox 1 and 2 above.)

Input=

We can now recover the value of K_{3} by xoring this string with the value of $\mathrm{E}\left(\mathrm{L}_{3}\right)$:
$\mathrm{E}\left(\mathrm{L}_{3}\right)$: \qquad
\oplus Input: \qquad = K3 : \qquad

