Mission 6

Name:

You are attacking an SDES system (3 rounds) using differential cryptanalysis.

You encrypt the plaintext P=[0,0,0,0,1,1,1,1,1,0,1,1] and get the ciphertext C=[0,1,0,0,1,1,1,1,1,0,0]. In Particular you have $L_3 = [0,1,0,0,1,1]$ and $R_3=[1,1,1,1,0,0]$.

In order to attack the system, you also use several different values for a second plaintext, P*. The values of the plaintext, along with the ciphertext and the corresponding values of the xor of the inputs to the sboxes, $(E(L_3) \oplus E(L^*_3))$ and the outputs $((R_3 \oplus R^*_3) \oplus (L_0 \oplus L^*_0))$ are given. Use this information to determine the value of $K_{3.}$

First alternate plaintext:

 $P^* = [1,0,0,1,1,0,1,1,1,0,1,1]$ (E(L₃) \oplus E(L^{*}₃)) = [1,1,1,0,1,0,0,1] ((R₃ \oplus R^{*}₃) \oplus (L₀ \oplus L^{*}₀)) = [1,0,0,1,0,1]

Possible values of input to Sbox 1 (From L₀):

Possible values of input to Sbox 2 (From L₀):

Second alternate plaintext: $P^* = [0,1,0,1,1,1,1,1,0,1,1]$ $(E(L_3) \oplus E(L^*_3)) = [1,0,0,0,0,0,1,1]$ $((R_3 \oplus R^*_3) \oplus (L_0 \oplus L^*_0)) = [0,1,1,0,1,1]$

Possible values of input to Sbox 1 (From L₀):

Possible values of input to Sbox 2 (From L₀):

Third alternate plaintext:

 $P^* = [0,1,1,0,1,1,1,1,0,1,1]$ $(E(L_3) \oplus E(L^*_3)) = [1,1,0,1,0,1,0,1]$ $((R_3 \oplus R^*_3) \oplus (L_0 \oplus L^*_0)) = [1,1,0,1,1,1]$

Possible values of input to Sbox 1 (From L₀):

Possible values of input to Sbox 2 (From L₀):

Based on this info, we conclude that the input to the Sboxes when encrypting the original plaintext was: (Concatenate the only remaining values for the input to Sbox 1 and 2 above.)

Input=_____

We can now recover the value of K_3 by xoring this string with the value of $E(L_3)$:

E(L₃):_____

⊕ Input:_____

= K3 :_____