MATH 314 Fall 2023 - Mode of Operation Class Notes

10/10/2023

Scribe: Oreoluwa Williams

Summary: In today's class we covered the five(5) Modes of Operation and how we encrypt and decrypt each.

Notes: We encrypt multiple blocks with a block cipher by using Modes of Operation.

- $BlocksofPlaintextX_1, x_2,$
- $\bullet \ EncryytionFunction and a key E_K(X)$
- $DecrpytionFunctionisD_K(Y)$

1. Electronic Codebook (ECB)

Each block is encrypted or decrypted separately using the encryption and decryption functions.

$$C_1 = E_K(X_1)$$

$$C_2 = E_K(X_2)$$

Encryption Function: $C_i = E_K(X_i)$

Decryption Function: $X_i = D_K(C_i)$

2. Cipher Block Chaining (CBC)

Pick an initial value IV

$$C_0 = IV$$

$$C_1 = E_K(X \oplus C_0)$$

$$C_2 = E_K(X \oplus C_1)$$

Encryption Function: $C_i = E_K(Xi \oplus C_{i-1})$

How to decrypt CBC?

Bob knows C_0, C_1, C_2 and K

$$D_K(C_1) = X_1 \oplus C_0$$

$$X_1(D_K) = C_1 \oplus C_0$$

$$X_2(D_K) = C_2 \oplus C_0$$

Decryption Function: $X_i = D_K(C_i) \oplus C_{i-1}$

Other modes of operation use the encryption function as a random number generator.

Xor with the plaintext to get the ciphertext.

Never use the decryption function.

3. Cipher Feedback (CFB)

$$C_0 = IV$$

$$C_1 = E_K(C_0) \oplus X_1$$

$$C_2 = E_K(C_2) \oplus X_2$$

Encryption Function: $C_i = E_K(C_{i-1}) \oplus X_i$

Decryption Function: $X_i = E_K(C_{I-1}) \oplus C_1$

4. Output Feedback (OFB)

$$O_0 = IV$$

$$O_1 = E_K(O_0)$$

$$C_1 = X_1 \oplus O_1$$

$$O_2 = E_K(O_1)$$

$$C_2 = X_1 \oplus O_2$$

$$O_i = E_K(O_{i-1})$$

Encryption Function: $C_i = X_i \oplus O_i$

Decryption Function: $X_i = C_I \oplus O_i$

5. Counter (CTR)

$$CTR_0 = IV$$

$$CTR_1 = CTR_0 + 1 \pmod{2}^{blocksize}$$

$$CTR_i = CTR_{i-1} + 1 \pmod{2}^{blocksize}$$

$$= CTR_0 + i \pmod{2}^{blocksize}$$

Encryption Function: $C_i = E_K(CTR_i) \oplus X_i$

Decryption Function: $X_i = E_k(CTR_i) \oplus C_i$