MATH 314 Fall 2019 - Class Notes

9/9/2019
Scribe: Nick Taormino
Summary: Starting the Hill Cipher.
Notes: First quiz today.
Hill Cipher: a block cipher(like the playfair cipher). Entire blocks of plain text are encrypted at the same time, one plain text letter could equate to multiple cipher text letters.

Block length: number of letters encrypted at the same time is a "block", this can be any integer

$$
m>=2
$$

for the Hill Cipher.
We will use linear algebra to encrypt and decrypt messages.
Key: mxm matrix K of integers $\bmod (26)$
represent each block of plain text as a vector \vec{v}
Encryption Method

$$
E(\vec{x})=\vec{v} * K
$$

Multiplication $=$ rows * columns
Example:

$$
m=2
$$

plain text : "june" $=9,20,13,4$

$$
K=\left[\begin{array}{ll}
3 & 9 \\
2 & 7
\end{array}\right]
$$

Encrypt each block $j u=<9,20>n e=<13,4>$

$$
\begin{gathered}
E(<9,20>)=<9,20>*\left[\begin{array}{ll}
3 & 9 \\
2 & 7
\end{array}\right] \\
E(<9,20>)=<9 * 3+20 * 2,9 * 9+20 * 7> \\
E(<9,20>) \equiv<67,221>(\bmod 26) \\
E(<9,20>) \equiv<15,13>(\bmod 26) \equiv<P, N>
\end{gathered}
$$

$$
\begin{gathered}
E(<13,4>)=<13,4>*\left[\begin{array}{ll}
3 & 9 \\
2 & 7
\end{array}\right] \\
E(<13,4>)=<13 * 3+4 * 2,13 * 9+4 * 7> \\
E(<13,4>) \equiv<47,145>(\bmod 26) \\
E(<13,4>) \equiv<21,15>(\bmod 26) \equiv<V, P> \\
\text { plain text }: \text { "june" } \equiv P N V P \\
\text { change 1 letter of plain text: June to Dune plain text }: \quad \text { "dune" }=3,20,13,4
\end{gathered}
$$

$$
E(<3,20>) \equiv<23,11>\equiv X L
$$

plain text : "june" $\equiv X L V P$
Hill cipher is reasonably secure against cipher text only attacks, but not against know plain text attacks.

$$
\begin{gathered}
E(\vec{x})=\vec{v} * K \\
\vec{x} K K^{-1}=\vec{y} * K^{-1} \\
\vec{x}=\vec{y} * K^{-1}
\end{gathered}
$$

Decryption Method

$$
D(\vec{y})=\vec{y} K^{-1}(\bmod 26)
$$

$$
K K^{-1}=I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

all 1 s running along the main diagonal
In order to decrypt K, it must have an inverse K^{-1}

