9/4 Notes - Substitution and Vigenere Ciphers

Scott Swatling

September 11, 2019

The Caeser cipher and the Affine cipher both fall under a larger category of ciphers known as substitution ciphers.

Substitution Cipher

Definition

• Any encryption method that maps each individual character to either itself, or any other character, once

Properties

- 26! combinations
- Too big to brute force
- Remains seceptible to frequency analysis

Attacks

- Chosen Plaintext
 - Encrypting the entire alphabet, or a sentence containing every letter of the alphabet, will directly reveal the key. Examples
 - Examples
 - * "abcdefghijklmnopqrstuvwxyz"
 - * "The quick brown fox jumped over the lazy dog"
 - Known Plaintext
 - * All the unique characters present in the plaintext will reveal, at least partially, the key for the cipher text
 - Ciphertext Only
 - * frequency analysis may be used in conjunction with commonly seen patterns in language to reveal the key

Key Observation

• Simply resisting a brute force attack is not enough to gurantee the relative security of a cipher

Vigenére Cipher

The key will consist of a word or phrase converted into their respective alphanumeric values, which we may call a vector. Example:

• converting "key"

 $-k \equiv 10 \pmod{26}$ $-e \equiv 4 \pmod{26}$ $-y \equiv 24 \pmod{26}$ $- \text{ the key is } <10 \ 4 \ 24>$

Encryption Steps

- 1. Convert the plaintext to numbers.
- 2. Bellow the converted plaintext, repeatedly copy the key vector until they both match in size.
- 3. Add the two lines in a top-down fashion then mod 26.
- 4. Convert the resulting line back into text.

Example

- The key will be "key" = <10 4 24>
- The plaintext will be "here is how it works"
- Step 1:

h	е	r	е	i	s	h	0	w	i	t	W	0	r	k	s
7	4	17	4	8	18	7	14	22	8	19	22	14	17	10	18

• Step 2:

h	e	r	e	i	s	h	0	W	i	t	W	0	r	k	s
7	4	17	4	8	18	7	14	22	8	19	22	14	17	10	18
10	4	24	10	4	24	10	4	24	10	4	24	10	4	24	10

• Step 3:

h	e	r	e	i	s	h	0	w	i	t	w	0	r	k	s
7	4	17	4	8	18	7	14	22	8	19	22	14	17	10	18
10	4	24	10	4	24	10	4	24	10	4	24	10	4	24	10
17	8	15	14	12	16	17	18	20	18	23	20	24	21	8	2

• Step 4:

h	e	r	e	i	s	h	0	W	i	t	W	0	r	k	s
7	4	17	4	8	18	7	14	22	8	19	22	14	17	10	18
10	4	24	10	4	24	10	4	24	10	4	24	10	4	24	10
17	8	15	14	12	16	17	18	20	18	23	20	24	21	8	2
R	Ι	Р	0	M	Q	R	S	U	S	Х	U	Y	V	Ι	C

• the plaintext "here is how it works" converts to "RIPO MQ RSU SX UYVIC" using the key "key"

Attacks

- Chosen Plaintext
 - Having a large string of a single character, preferably 'a', will reveal the key vector
 - Examples
 - * "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa..."
 - Known Plaintext
 - * Simply reverse the encryption process by subtracting the plaintext from the ciphertext
 - Ciphertext Only
 - * Using a guessed length N for the vector key, frequency analysis may be performed for every Nth character in the ciphertext
 - * Babbage's Trick
 - 1. Write the ciphertext on one line
 - 2. copy the ciphertext on another line shifted to the right once
 - 3. repeat step 2 until there are, at most, as many lines as the length of the ciphertext
 - 4. Count the number of times a letter for any given line repeats when compared to the original ciphertext

Example

- We will use the previous example's cipher text "RIPOMQR-SUSXUYVIC"
- \cdot Step 1:

R	Ι	Р	Ο	М	Q	R	S	U	S	Х	U	Y	V	Ι	С
С	R	Ι	Р	Ο	Μ	Q	R	S	U	S	Х	U	Y	V	Ι
Ι	С	R	Ι	Р	0	М	Q	R	S	U	S	Х	U	Y	V
V	Ι	С	R	Ι	Р	0	М	Q	R	S	U	S	Х	U	Y

 \cdot step 4:

Line 1 - 0 coincidence(s)

Line 2 - 1 coincidence(s)

Line 3 - 2 coincidence(s)

•••

We will see a noticeable spike in the number of coincidences on lines that are multiples of the length of the key