Notes 9/30

Kristen Thesing

October 21, 2019
-a is a primitive root $\bmod \mathrm{p}$ if a^{k}
produces all the numbers 1,2 ..p- 1 as k varies from 1 top
-The powers of a are all the residues $(\bmod p)$ besides 0
-Every prime number has atleast one primitive root
-ex: Primitive $\operatorname{roots}(\bmod 11)$ are $2,6,7,8$
-if $\mathrm{a}^{x} \equiv a^{y} \quad(\bmod p)$ thenx $\equiv y \quad(\bmod p-1)$
-in the example $1,4,9,5,3$ have square $\operatorname{roots}(\bmod 11)$
$-x^{2} \equiv 6 \quad(\bmod 11)$ hasnosolution
-a is a quadratic residue if $\mathrm{x}^{2} \equiv a \quad(\bmod p)$
has a solution
-if a is NOT a quadratic residue we call it quadradic
non-residue
-for a prime number p
$(\mathrm{a} / \mathrm{p})=1$ if $\mathrm{x}^{2} \equiv a \quad(\bmod p)$
0 if $\mathrm{a} \equiv 0 \quad(\bmod p)$
-1 if $x^{2} \equiv a \quad(\bmod p)$ hasnosolution
Note: Number on bottom is prime
ex: $(4 / 11)=1$ because 4 was a quadratic residue and has a square root
ex: $(6 / 11)=-1 \mathrm{~b} / \mathrm{c}$ is not in the list of square roots
ex: $(10 / 11)=-1 \mathrm{~b} / \mathrm{c}$ is not in the list of square roots
ex: $(22 / 11)=0$ because $0 \equiv 22 \quad(\bmod 11)$
ex: $(16 / 11)=(5 / 11)=1 \mathrm{~b} / \mathrm{c}$ it is in the square roots
Rules for Legendre Symbol
$(\mathrm{a} / \mathrm{p})=(\mathrm{b} / \mathrm{p})$ if a $(\bmod p)$
$-(\mathrm{ab} / \mathrm{p})=(\mathrm{a} / \mathrm{p})(\mathrm{b} / \mathrm{p})$
-quadratic reciprocity: if p and q are both odd primes
then $(q / p)=-(q / p)$ if $p=q \equiv 3(\bmod 4)$
(p / q) otherwise
$-(2 / \mathrm{p})=1$ if $\mathrm{p} \equiv 1,7 \quad(\bmod 8)$
-1 if $\mathrm{p} \equiv 3,5 \quad(\bmod 8)$
$-(1 / p)=1$
ex: is 43 a quadratic residue $(\bmod 73)$?
$(43 / 73)->(73 / 43)=(30 / 43)=(2 / 43)(3 / 43)(5 / 43)$

$$
\begin{aligned}
& (3 / 43)=-(43 / 3)=-(1 / 3)=-1 \\
& (5 / 43)=(43 / 5)=(3 / 5)=(5 / 3)=(2 / 3)=-1 \\
& \operatorname{ex:~}(1001 / 9907)=(7 / 9907)(11 / 9907)(13 / 9907) \\
& =(9908 / 7)^{*}(9907 / 11)^{*}(9907 / 13) \\
& =-(2 / 7)^{*}(-7 / 11)^{*}(1 / 13) \\
& =1 \\
& 2_{\overline{3}}
\end{aligned}
$$

