FIELDS AND FINITE FIELDS

If we have a collection of things we can add, subtract, multiply and divide (everything besides 0)

and the usual math rules apply Then we call this collection a Field

Fields.

Real numbers \mathbb{R} Complex numbers \mathbb{C} Rational Numbers \mathbb{Q} If p is prime integers((mod)p) form a field \mathbb{F}_p

Finite Field. is a field with a finite number of things in it

useful fact. For any integer n there is at most one finite field with n elements If p is prime then \mathbb{F}_p is the integers modulo p If n is composite and \mathbb{F}_n exists it is <u>not</u> the integers ((mod)n) n=4 Integers(mod4)

+	0	1	2	3		•	0	1	2	3	
0	0	1	2	3		0	0	0	0	0	
1	1	2	3	0		1	0	1	2	3	not a field because 2 has no inverse
2	2	3	0	1	-	*2	0	2	0	2*	
3	3	0	1	2	-	3	0	3	2	1	

Polynomials over Finite Fields. Take polynomials with coefficients (mod(2)) 0 and 1 are the only coefficients $\mathbb{F}_2[x]$

Nifty fact for $\mathbb{F}_2[x]$ Addition and subtraction are the same thing! $f(x) \cdot g(x) = (x^4 + x)(x^3 + x + 1) = x^4(x^3 + x + 1) + x(x^3 + x + 1) = (x^7 + x^5 + x^4) + (x^4 + x^2 + x) = x^7 + x^5 + x^2 + x$ we can do division with remainder $f(x) \div g(x)$ $(x^4 + x) \div (x^3 + x + 1) = x(x^3 + x + 1) + x^2$ $R(x^2)$ A ring is a collection of things you can add, subtract, multiply but not necessary divide Exs: All Fields, Integers, Polynomials, Matrices

Since we can do division with remainder we can do modular arithmetic with polynomials what is:

 $\begin{array}{l} (x^2+1)\cdot(x+1)(\pmod{x}^3+x+1)?\\ \equiv (x^3+x^2)+(x+1)(\pmod{x}^3+x+1)\equiv x^3+x^2+x+1(\pmod{x}^3+x+1)\\ \text{do division with remainder}\\ x^3+x^2+x+1\div x^3+x+1=1(x^3+x+1)+x^2\quad R(x^2) \end{array}$

note. Always reduce to get a polynomial smaller(degree) than the modulus!

A polynomial that cant be factored into smaller polynomials is called <u>irreducible</u>

Suppose g(x) is an irreducible polynomial in $\mathbb{F}_2[x]$ of degree n Then the polynomials mod g(x) form a field with 2^n many things in it

Claim: $x^2 + x + 1$ is irreducible smaller degree polynomials: x, 1, x+1 $x^{2} + x + 1 \div x = x + 1(x) + 1 R(1)$ $x^{2} + x + 1 \div x + 1 = x(x + 1) + 1R(1)$ $x^2 + x + 1$ is irreducible Possible remainders mod $x^2 + x + 1$ 0, 1, x, x+10 1 х x+1 $0 \ 1$ +x+10 x+10 1 0 0 0 0 х 0 1 1 0 x+1 x 1 0 1 x+1х х x+1 0 1 0 x x+1 1 х х $x+1 \mid 0 \quad x+1 \quad 1$ x+1 | x+1 | x1 0 х $\{0, 1, x, x+1\}$ Form a field \mathbb{F}_4 $x^4 + x + 1$ is irreducible \mathbb{F}_1 6 is the polynomials ((mod x)⁴ + x + 1) x^2 is one such element, compute $(x^2)^{-1}$ Euclid's Algorithm Division with remainder