MATH 314 Fall 2019 - Class Notes

09/23/2019
Scribe: Sujan Tulachan
Summary: We worked on basics principle of fermat's little theorem, 3 Pass protocol, and Euler Phi Function

Notes: when doing arithmetic (mod p). we reduce exponent (mod $p-1$) Example:
$x^{3} \equiv 6(\bmod 11)$
raise both sides to power a
$x^{3 a} \equiv 6^{a}(\bmod 11)$
Goal is to find a when $3 \mathrm{a} \equiv 1(\bmod 10)$
$10=3 * 3+1$
$3=3 * 1+0$
$1=10-3 * 3$
$1 \equiv-3 * 3(\bmod 10)$
$3^{-1} \equiv 7(\bmod 10)$
$x^{3 * 7} \equiv 6^{7}(\bmod 11)$
$x^{21}=x^{10^{2}} \equiv 6^{7}(\bmod 11)$
$1 * x \equiv 6^{7}(\bmod 11)$
$x \equiv 6^{4} * 6^{2} * 6(\bmod 11)$
Note
$6^{2} \equiv 36 \equiv 3(\bmod 11)$
$6^{4} \equiv 3^{2} \equiv 9(\bmod 11)$
$x \equiv 4 * 3 * 6(\bmod 11)$
$x \equiv 8(\bmod 11)$

3-Pass Protocol

Physical Version

Alice want to send the mail package to bob. Alice put lock without the key to Bob. Then, Bob again put the lock without key and sends back to Alice. Alice unlock her lock and sends back to Bob. Then finally, bob unlock his key and retrieves
the message.
Math Version
Alice is going to pick big prime number p(usually 200 digits)
Alice can tell everyone about p)
Then, She picks a random secret number a where $0<a<p-1)$ and $\operatorname{gcd}(a, p-1)=1$
Alice's Encryption Function)
$\mathrm{E}(\mathrm{x}) \equiv \mathrm{x}^{a}(\bmod p)$
Alice's Decryption Function
$\mathrm{D}(\mathrm{y}) \equiv \mathrm{y}^{a^{-1}}(\bmod p)$
Bob also picks a secret number b where b is $0<b<p-1$ where $\operatorname{gcd}(b, p-1)=1$ he also computes b^{-1}
Note:
b^{-1} exists only if $\operatorname{gcd}(b, p-1)=1$
Alice takes the plaintext and encodes it as a number m such that $0 \leq m<p$
She computes $\mathrm{C} 1 \equiv \mathrm{E}(\mathrm{m}) \equiv m^{a}(\bmod p)$
She sends C1 to Bob

Bob encrypts C1
She computes $\mathrm{C} 2 \equiv \mathrm{E}(\mathrm{c} 1) \equiv c 1^{b}(\bmod p)$
He sends C2 back to Alice
She decrypts C2
She computes $\mathrm{C} 3 \equiv \mathrm{D}(\mathrm{c} 2) \equiv c 2^{a^{-1}}(\bmod p)$
She sends C3 back to Bob
He computes $\mathrm{C} 4 \equiv \mathrm{D}(c 3) \equiv c 3^{b^{-1}}(\bmod p)$
$\mathrm{C} 4 \equiv m^{a * b * a^{-1} * b^{-1}}$
$\mathrm{C} 4 \equiv m(\bmod p)$
Drawback
Have to send 3 different messages
Man in the middle attack works well against the 3- pass Protocol

Euler Phi Function

```
    \(\varphi(n)=\) no of integer a in \(1 \leq \mathrm{a}<\mathrm{n}\) with \(\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1\)
Examples:
\(\varphi(12)=4\)
\(\varphi(26)=12\)
\(\varphi(11)=10\)
if ' p ' is a prime then
\(\varphi(p)=p-1\)
\(\varphi\left(p^{k}\right)=p^{k-1}(p-1)\)
    if the \(\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1 \varphi(a b)=\varphi(a) * \varphi(b)\)
Examples:
\(\varphi(24)=\varphi(8 * 3)\)
\(\varphi\left(2^{3} * 3\right)=\varphi\left(2^{3}\right) * \varphi(3)\)
\(2^{2}(2-1) *(3-1)=8\)
Therefore, there are 8 numbers between 1 and 24 that doesn't have common factor
with 24
```

```
    \(\varphi(700)=\varphi(7 * 100)\)
```

 \(\varphi(700)=\varphi(7 * 100)\)
 $\varphi\left(2^{2} * 5^{2}\right) *(7)=\varphi\left(2^{2}\right) * \varphi\left(5^{2}\right) * \varphi(7)$
$\varphi\left(2^{2} * 5^{2}\right) *(7)=\varphi\left(2^{2}\right) * \varphi\left(5^{2}\right) * \varphi(7)$
$6 * 2 * 20=8$
$6 * 2 * 20=8$
Euler's Theorem if $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ then $a^{\varphi(n)} \equiv 1(\bmod n)$
Basic Principle for exponents (mod n). if working in (mod n) then we work $\bmod \varphi(n)$ in the exponents.

```
```

