MATH 314 Fall 2019 - Class Notes
 9/18/2019

Scribe: Robert Connors
Summary: Class 9/18/19 consisted of using Euclid's algorithm to find GCD and working backwards to find the triple ($\mathrm{GCD}, \mathrm{x}, \mathrm{y}$) as well as Repeated Squaring.

Notes:

- Finding X, Y in $100 x+83 y=1$

1. $100=1(83)+17$
2. $83=4(17)+15$
3. $17=1(15)+2$
4. $15=7(2)+1$

- Now we work from the bottom up substituting as we can. The goal is to get the final equation in terms of $83 *$ some number pluse $17 *$ some number.

1. $1=1(15)-7(2)$

We can substitute in for 2 from our equations above:
2. $1=1(15)-7(17-1(15))$

Now we simplify: Distributing the 7 gives us -(17) and 7(15). We already gave 1(15) so we combine to get 8(15).
3. $1=-7(17)+8(15)$
4. $1=(-7(17)+8(83-4(17))$
5. $1=8(83)-39(17)$
6. $1=8(83)-39(100-(1(83))$
7. $1=47(83)-39(100)$ Therefore $\mathrm{x}=-39, \mathrm{y}=47$

- Steps to find $a^{-1}(\bmod \mathrm{n})$

1. Compute gcd(u,n) using Euclid's Algorithm. Note: if GCD != 1 then the inverse does not exist.
2. Find x, y so that $\mathrm{Ux}+\mathrm{Ny}=1$
3. reduce $(\bmod n)$
4. $a^{-1}=\mathrm{x}(\bmod \mathrm{n})$

As an example take $-39(100)+47(83)=1$ from the previous problem.
If you wanted to find $83^{-1}(\bmod 100)$, then $-39(100)$ reduced ($\bmod 100$) would equal 0 leaving only $47(83)=1$ now solving the leftover equation you would get 83^{-1} $=47(\bmod 100)$.

- Repeated Squaring

Solve for $5^{103}(\bmod 7): \quad\left(5^{64}\right)\left(5^{32}\right)\left(5^{4}\right)\left(5^{2}\right)\left(5^{1}\right)$
$5^{-1}=5(\bmod 7)$
$5^{2}=25=4(\bmod 7)$
$\left.5^{2}\right)^{2}=4^{2}=16=2(\bmod 7)$
$5^{8}=\left(5^{4}\right)^{2}=2^{2}=4(\bmod 7)$
$5^{16}=\left(5^{8}\right)^{2}=2(\bmod 7)$
Notice that there is a pattern that will continue.
Following the pattern you get (2) (4) (2) (4) (5) for the corresponding powers which equals 5 . So $5^{103}=5(\bmod 7)$.

